
1

The Information Access 
Accelerator

Ralph Stout, iWay Software
4 November, 2005

Copyright  © 2001 iWay Software 1



2

Copyright  © 2001 iWay Software 2

Agenda

Introduction
•Preliminary Remarks.
•Loading the Database.
•Querying the Database
•Scaling Up

Architectural Considerations
•Program-data independence
•Strong Data Independence
•Data Representation 
•Mathematical Foundation

Information Access.
• Adaptive Restructuring
• Attacking the Bandwidth 

problem
•Packaging

Benchmarks
•SONY
•TPC-H (Query 9)

Concluding Remarks



3

Copyright  © 2001 iWay Software 3

The Abstraction Challenge

The Ideal
The Reality

Environment

Complexity
Appli-
cation

Abstraction

Transparency

Level

Left diagram: As the abstraction level they support rises, software systems tend to 
become increasingly opaque, making it impossible for application designers to see (or 
control) the factors that govern performance. We seem to be unable to achieve a high 
level of abstraction without interfering with our ability to view and manipulate 
performance-related software layers. Moore’s Law has helped mask the performance 
penalties associated with high abstraction and low transparency levels but it can not do 
so indefinitely.

Right diagram: It goes without saying that trivial applications running in trivial 
environments can’t do anything interesting. Complexity must be rooted either in the 
software infrastructure, the application system, or both. The more complexity the 
infrastructure absorbs, the better developers like it. To attain their goal (which is to write 
no code at all) IT organizations force software vendors to keep boosting what is already 
a dangerously high level of abstraction. 



4

Copyright  © 2001 iWay Software 4

An Embarrassment of Riches

Time

“Capacities continue to double each year, while access times are 
improving at 10 percent per year … we have a vastly larger storage
pool, with a relatively narrow pipeline into it.”
Jim Gray in the ACM Queue, 9/30/2003.

Disk Capacity

Speed of Access

Storage capacity is increasing much faster than our ability to access information. If commercial 
RDBMS continue to read only a few kilobytes of data at a time, they will not achieve the 
bandwidth needed to perform operations on data sets that will soon be two orders of magnitude 
larger than they are today. RDBMSs vendors are reluctant  to abandon the random access 
strategies they have used since the 1970s. But they must – and the transition is likely to be 
painful. It means shedding access mechanisms that many developers regard as sacrosanct. Who 
would have thought, for example, that B-Trees and other venerable data structures would 
eventually become a barrier to performance? Our experiments with XSP, an access engine that 
eschews pointers of any kind, have shown pretty conclusively that conventional, pointer-based, 
storage structures already represent more of a problem than a solution. As you will see, XSP 
regularly outperforms DB2 and Oracle. Why? Because it is not constrained by small page sizes 
and because it can exert a greater degree of performance control over its I/O access mechanism 
than any commercial DBMS.



5

Copyright  © 2001 iWay Software 5

Tales of Woe

People are not satisfied with their DBMSs. They take too long to load data; they bog down when 
the database gets too large and when the queries get too complex.



6

Copyright  © 2001 iWay Software 6

Loading The Database

Consider the curious story of Lewis Cunningham, who, in a blog entitled “The Load to Hell …”
recounts his experiences loading 800 million records into an Oracle database. After processing 
only 35 million rows in the first ten days (ten days!), Cunningham, who was under time pressure, 
decided to start over from scratch. Plan B, which entailed discarding some indices and foreign 
keys, came to grief because of a persistent Oracle bug. Plan C entailed discarding all primary 
keys, sacrificing even more integrity constraints and indices and bypassing the Oracle loader. 
Cunningham’s blog speaks volumes about the state of the database art circa 2005. Only by 
writing an application-specific loader and emasculating the index structure of the database, was 
he able to meet his deadline. Looking back over the statistics posted by the native Oracle loader, 
we see that it was achieving a single-processor insertion rate of only 41 rows per second. 
Cunningham’s hand-tailored solution ran much faster but, then, it postponed most of the heavy 
lifting until later on. Index building, as any veteran of the ETL wars will tell you, sets you back.

Reference:  “The Load To Hell …”, ITtoolbox Blogs, Entry posted on 7/8/2005 by Lewis R. 
Cunningham (http://blogs.ittoolbox.com/oracle/guide/archives/004888.asp)



7

Copyright  © 2001 iWay Software 7

Response Time

Indexing schemes make sense only if their benefits more than compensate for the price they 
exact at load time. The results of a recent experiment[1] pitting Oracle’s sophisticated random 
access engine against a set of sequential access procedures written in SETL DB, call the wisdom 
of the B-tree indexing tradeoff into question. Oracle completed the suite of 21 TPC-H  decision 
support queries against a one gigabyte database in 2266 seconds; SETL DB executed the same 
suite in 219 seconds. Why? In the course of processing the test script Oracle read innumerable, 
small, sparsely populated pages and SETL DB a relative handful of large, densely populated, 
pages. Oracle hopped from track to track, repositioning the read/write head and waiting for the 
platter to rotate. But SETL DB, having repositioned the read/write head, always pumped as much 
data as it possibly could through the I/O pipeline. This simple strategy kept disk arm movement 
and rotational delays in check; Oracle’s highly optimized indexing scheme did not. 

[1] Study conducted by Professor Jacob T. Schwartz and Dr. Toto Paxia of NYU; Ralph Stout 
and Yakov Kushnirsky of iWay Software.



8

Copyright  © 2001 iWay Software 8

Scaling Problems

Disk capacity is increasing at an unprecedented rate, much faster than that of the slender pipeline 
that links it to the CPU, and the resulting imbalance is generating waves of technological change 
that will have a profound impact on all of us. According to Jim Gray, the head of Microsoft’s 
Bay Area Research Center, “capacities continue to double each year, while access times are 
improving at 10 percent per year.”[1] If this trend continues, IT will be unable to cope with 
database growth. 

[1] ACM Queue, June, 2003, “A conversation with Jim Gray,” a June, 2003 (interview conducted 
by Dave Patterson).



9

Copyright  © 2001 iWay Software 9

• The largest commercial database now exceeds 100 terabytes 
(a threefold increase since 2003).

• The largest Windows database now totals 19.5 terabytes (a 
twofold increase since 2003).

• One respondent has a 2.8 trillion row database (a fivefold
increase since 2003).

• Another respondent has a peak workload of a billion SQL 
statements/hour.

According to the TOPTEN Survey …

According to the most recent TOPTEN Survey[1], the largest commercial database already 
exceeds 100 terabytes (a three-fold increase since 2003) and the largest database running within 
the Windows environment totals 19.5 terabytes. One respondent claims to have a 2.8 trillion row 
database (a five-fold increase since 2003) and another a peak workload of no less than a billion 
SQL statements per hour. These are impressive numbers. Now that the hardware constraints that 
have historically held database growth in check have been removed, rapid database growth is 
likely if not inevitable. 

TOPTEN: A survey of the world’s largest and most heavily used databases conducted yearly by 
the Winter Corporation (www.wintercorp.com). HP, IBM Corporation , Microsoft Corporation, 
Oracle Corporation, Sun Microsystems, Inc. and Sybase Inc. sponsor this program.



10

Copyright  © 2001 iWay Software 10

Architecture

History: Early mainframe computers came with less memory and external storage than many of 
the prosaic consumer items on sale today at Wal-Mart. It is no accident that the designers of the 
pioneering SEQUEL-XRM and SYSTEM R prototypes that, in the 1970s, ushered in the 
relational era were especially conservative in their use of hardware resources. By 1981, when 
Oracle and SQL/DS, the first commercial implementations of the SQL language, hit the street, 
computers had improved — Moore’s law was at work even then — but not nearly enough to 
justify a serious reexamination of the basic design decisions that contributed so much to the 
success of the first SQL prototypes. In consequence, Oracle and SQL/DS inherited the physical 
data access architecture of SYSTEM R and so, in time, did DB2, DG/SQL, SYBASE and 
INGRES. 

SYSTEM R layered SQL language capabilities on top of the B-tree mechanism invented in 1971 
by Rudolph Bayer, then a research scientist at Boeing. Over the years, B+-trees, B*-trees, 2-3 B-
trees, B-trees with prefix compression and many other variations on Bayer’s original theme have 
evolved but for the purposes of this discussion, it is sufficient to know that all B-tree engines —
and by extension, all leading relational database management systems — partition the disk into 
units of modest size called nodes or pages and that they treat the disk as a random access device. 
This low bandwidth solution to low-level data access is the main reason why complex queries 
take so long to process. 



11

Copyright  © 2001 iWay Software 11

RDBMS Architecture

Binding
Application

SQL Expression (Text)
SQL Expression (Internal)

Execution Plan
Execution Engine 

Virtual

Storage Data

Process

V/P

The strength of the relational data model lies in its ability both to uncouple application logic and 
data structures and to raise the degree of programming abstraction to a comfortable level. While 
the model says nothing about how to realize an RDBMS, the most popular implementations 
(from IBM, Oracle and Informix) are virtually identical. None offers much in the way of 
transparency, so if you are experiencing performance problems there isn’t much you can do 
much to remedy the situation. 

Thanks to a well-drawn interface (V/P in the above diagram) between its virtual and process 
layers, the relational model delivers program/data independence. Unfortunately, because the 
process and storage layers lack a similarly rigorous interface, it is impossible to inject a better 
storage solution into the mix. 



12

Copyright  © 2001 iWay Software 12

XSP Architecture

Binding
Application

SQL Expression (Text)
SQL Expression (Internal)

Execution Plan
XSP Execution Engine 

Virtual

Process

DataStorage

V/P

P/S

In an XSP-based system the process and the storage layers operate independently. Here, instead 
of a single well-defined interface, there are two: V/P and P/S. With this architecture, it is possible 
to exchange an inefficient storage structure (e.g., B-Trees) for something better without having to 
re-implement the process subsystem. Conventional RDBMSs lack this degree of transparency.



13

Copyright  © 2001 iWay Software 13

Set Membership/Data Representation

Representation

Set Membership 
is shared across 
environments.

Data Representa-
tion is not shared 
across environ-
ments.

M
em

be
rs

hi
p

The XST architecture preserves membership across environments while making it possible for 
the data representation to vary from one environment to the next.  Thus, performance at the 
process level can remain independent of how relationships are expressed at the conceptual 
level and how data is represented at the storage level.

This is the case for the XST approach in a nutshell:

(1) Set membership determines functionality.
(2) Data representation at the storage level determines performance.
(3) Strong data independence separates functionality concerns from performance concerns.



14

Copyright  © 2001 iWay Software 14

Mathematical Foundation

V
P

P
S S

P

P

V

A B

c1
c2

c3

d1
d2

d3

f

h1
h2
h3

Sto-1

Sto-3

Sto-2

Sto-6

Sto-4 Sto-5

g1
g2

g3 r1
r2

r3

For all x in A, ri(hi(gi(x))) = f(x)

This is what mathematicians would call a commutative diagram.

Think of a system in terms of five components: three architectural layers (V, P and S)  connected 
by two interfaces (V/P and P/S). V represents the application view level, P the database 
processing level and S the secondary storage level. From a mathematical point of view, the three 
levels are structurally distinct, disjoint spaces comprising operations and operands. The user view 
and processing levels are linked by the V/P interface (commonly called the query language 
interface) and the processing and storage levels are linked by the P/S interface (commonly called 
the I/O interface). 

Let A and B represent any two collections of relational tables visible to application programs. 
We model the transformation of A into an implementation-friendly representation in P by gi to ci
and the transformation of B into an implementation-friendly representation in P by ri from di. The 
process, f , which transforms A to B, has meaning within V, but not within P. The problem: To 
find hi that map ci to di such that for all x in A, ri(hi(gi(x))) = f(x). 

Systems, like XSP, which are based on the mapping of mathematical identities between spaces 
are said to be strongly data independent because no space in the mix knows how any other space 
organizes data. This level of independence goes beyond that supported by any RDBMS. 
RDBMSs insulate application logic from external data structures; XSP goes one step farther. It 
makes it possible to exert adaptive control over system performance (Imagine being able to 
replace a poor performing data structure with something better).



15

Copyright  © 2001 iWay Software 15

Information Access

Disk technology is moving into uncharted territory. Data access — positioning the disk arm and 
rotating the platter — is 10 times faster than it was in 1989 and I/O transfer rates are 40 times 
faster, but storage capacity has increased by a factor of no less than 10,000. According to Jim 
Gray of Microsoft, “if you read a few kilobytes in each access … it [would] take a year to read a 
20-terabyte disk.” That’s low bandwidth — and since B-tree pages are rarely more than 75% full 
(when a page fills up, it splits into a pair of half-empty pages) DBMSs that rely on B-tree access 
make matters even worse. XSP attacks the bandwidth problem by (1) reading large blocks of data 
whenever it repositions the read/write head and (2) by optimizing I/O traffic with informationally
dense data transfers. 



16

Copyright  © 2001 iWay Software 16

Shift Register Memory

Input Operand

Output Operand

XSP

Discard

Retain

Key

XSP works like a shift register memory, converting large data sets into smaller ones. Here, we 
see it reading an operand, which for the sake of argument we will  assume is peppered with data 
relevant to the current query. The result: a compact operand containing nothing but relevant data. 
A complex analytical query would typically trigger many such operations. Each would reduce 
the amount of data in play until, finally, no more reduction is necessary. At that point, XSP 
would assemble its response and make itself available to process another request.



17

Copyright  © 2001 iWay Software 17

Adaptive Restructuring

Strong Data Independence makes adaptive restructuring for performance purposes possible. 
While, in theory, the composition of the database could evolve constantly, we plan to adopt a less 
volatile approach. In our scheme, the system would accumulate a knowledge base reflecting 
usage patterns and, when it is time to restructure, consult the knowledge base and act 
accordingly. 



23

Copyright  © 2001 iWay Software 23

ArchitectureBenchmarks

iWay Software has been experimenting with XSP for some time. The results of two of our 
benchmark studies follow.



24

Copyright  © 2001 iWay Software 24

The Sony Benchmark

??

?? ?? ?? ??

Preparation: Load and Optimize the Databases

Information Access: Issue 4 Distinct Queries

Information Access:  Load the data. Issue a Family of Related Queries

The Sony series of benchmark tests measured database load time and query response time. The 
first test (top) entailed loading one gigabyte of tab-delimited raw data into a structured database 
and organizing it for optimum performance. The second test (center) entailed processing four 
problem queries. The third combined data loading and iterative query execution. 

The test were conducted on a 2.6 MHz Pentium 4 PC with one Gigabyte of RAM and an 80 
Gigabyte, 7200 rpm parallel ATA hard drive 



25

Copyright  © 2001 iWay Software 25

0.4980.2090.290XSPCustomer

2.7020.2522.450OracleCustomer

6.9704.7502.220XSPSales

23.83218.08205.750OracleSales

TotalOptimizationDataDBMSFile

Load Time

Load Index Optimize

Preparation

Scorecard: Oracle 26.534 minutes; XSP 7.468 minutes

Given a set of tab-delimited raw data files and some questions to answer, RDBMSs cannot 
respond at once. They must first load the database and, assuming performance is a concern, build 
auxiliary index files and accumulate statistics as well. XSP is more flexible in this regard. XSP 
can either load the data up front or load it on the fly. In order to facilitate a comparison between 
Oracle and XSP, we directed XSP to load the data up front. This table summarizes the amount of 
time Oracle and XSP required to load and optimize the Sony Sales database. All timings are 
quoted in minutes and fractions of minutes. 

Oracle took a total of 26.534 minutes and XSP a total of 7.468 minutes to prepare the database. 
For Oracle, the optimization step entailed building indices and computing statistics. For XSP it 
entailed extracting some useful subsets from the raw data, manipulating the subsets and saving 
them for future use. 



26

Copyright  © 2001 iWay Software 26

Information Access: 4 Queries

1.7500.1200.8700.6100.150XSP

15.9190.6516.3172.4676.484Oracle

TotalQ4Q3Q2Q1DBMS

Execution Time in Minutes

? ? ? ?

Sony supplied four sample SQL queries, which for convenience we will call Q1, Q2, Q3 and Q4. 
We combined the queries into scripts and executed the scripts, taking care to isolate the systems 
being tested, both from the network, which could have a destabilizing effect, and from competing 
application systems. This table summarizes our findings. Although the Sony database is small (1 
gigabyte), the queries are complex. Q1, for example, contains two sub-queries, both calling for 
an outer join. The sub-queries generate intermediate answer sets, which then are (inner) joined to 
produce a final result.



27

Copyright  © 2001 iWay Software 27

8.87886.758_Total

0.1104.885(S, M)#10

0.1305.235(K, S)#9

0.1506.884(A, K)#8

0.1606.750(A, P)#7

0.1305.718(T, X)#6

0.1506.434(N, H)#5

0.1405.983(T, H)#4

0.1305.667(O,X)#3

0.1406.250(N, X)#2

0.1706.418(N, J)#1

7.46826.534_Preparation

XSPOracleLike ClauseSystem

Execution Time: 10 Related Queries

Information Access: Related Queries

??

The test script in this case calls for loading the database and executing 10 related requests for 
information. The first such request is simply Q1 from the previous test. The remaining nine 
are identical to Q1 in all respects except for parameter substitutions. Column two of the table 
documents the parameter values that make each query in the suite unique. 

Remark: The slight timing discrepancies between row #1 in the above table and column Q1 in 
the previous table are to be expected.



28

Copyright  © 2001 iWay Software 28

1.41060.224_Total

0.1104.885(S, M)#10

0.1305.235(K, S)#9

0.1506.884(A, K)#8

0.1606.750(A, P)#7

0.1305.718(T, X)#6

0.1506.434(N, H)#5

0.1405.983(T, H)#4

0.1305.667(O,X)#3

0.1406.250(N, X)#2

0.1706.418(N, J)#1

7.46826.534_Preparation

XSPOracleLike ClauseSystem

Execution Time: 10 Related Queries

Information Access: Related Queries (2)

??

A 40-fold 
speed increase

Oracle processed the 10 queries in 60.224 minutes. XSP, at 1.410 minutes, processed the suite 
more than 40 times faster. 



29

Copyright  © 2001 iWay Software 29

The TPC-H Q9 Benchmark

Load Index Opt.
??

Initial Response

RIAM Measure

Load Index Opt.
??

Throughput Measure

Load Index Opt.
??

24-Hour Measure

Load Index Opt.
??

The TPC-H benchmark measures the ability of decision support systems to deal with large 
quantities of data, process complex SQL queries and respond to realistic business questions. Its 
Composite query-per-hour performance measure has become the preferred metric for comparing 
the relative merits of relational DBMSs. In our experiments we applied a slightly different 
metric. Instead of simply taking query response time into account, we factored database load 
time in as well.

The TPC consortium provides a program (DBGEN) that generates character-delimited 
interrelated sequential files. Of the 22 queries designed to exploit these relationships, the Product 
Type Profit Measure Query (Q9) is among the most difficult. It is not possible to respond to Q9, 
a six-way join, without performing a full-table scan of a very large table. 

We conducted the tests on a 440 MHz Pentium with 256 Megabytes of RAM and 30 Gigabytes 
of external storage (Type: Western Digital WD300BB-32CCB0). The transfer rate of this unit, 
which is in the 16-18 Mb/sec range, is slow by modern standards. Today, high-end hard drives 
often deliver data at rates that exceed 100Mb/sec. The slow speed of the WD device is worth 
noting here because it penalizes XSP much more than it does either DB2 or Oracle. 



30

Copyright  © 2001 iWay Software 30

Initial Response Measurement

26137XSP

457261114Oracle

27013666DB2

4Gig2Gig1GigSystem

First Result (in minutes)

Load Index Opt.
??

This table documents how long it took each system to load the database and produce an initial 
response to Q9.The raw data file ranged in size from 1 gigabyte to 4 gigabytes. Oracle was the 
slowest to respond because it took a very long time to load and optimize the data. It is worth 
noting that Oracle processed Q9 faster than DB2 (but not nearly as fast as XSP). 



31

Copyright  © 2001 iWay Software 31

Initial Response Measurement

26137XSP

457261114Oracle

27013666DB2

4Gig2Gig1GigSystem

First Result (in minutes)

Load Index Opt.
??

10.5x 
20x 

Note that XSP outperforms DB2 and Oracle in every case. In the two gigabyte test, for example, 
it generated a first response 10.5 faster than DB2 and 20 times faster than Oracle.



32

Copyright  © 2001 iWay Software 32

RIAM Measurement

402212XSP

1318544190Oracle

1622818383DB2

4Gig2Gig1GigSystem

RIAM

Load Index Opt.
??

RIAM, for Rapid Information Access Measure, tells how long it takes to (1) load and optimize a 
collection of raw data, (2) respond to a query for the first time and (3) respond to ten additional 
(parameterized) variations of that query. Here, Oracle’s superior, but costly, optimization 
procedure enabled it to outperform DB2. Note that XSP consistently outperformed both Oracle 
and DB2. 



33

Copyright  © 2001 iWay Software 33

RIAM Measurement

402212XSP

1318544190Oracle

1622818383DB2

4Gig2Gig1GigSystem

RIAM

Load Index Opt.
??

40x 
32.9x 

XSP completed the 4 gigabyte RIAM test 40 times faster than DB2 and 32.9 times faster than 
Oracle.



34

Copyright  © 2001 iWay Software 34

RIAM Measurement (continued)

Load Index Opt.
??

Database Size Multiple
1 2 4

Elapsed Time
Multiple

7

4

1

?

?
Oracle

XSP

Note also that XSP is more scalable than either DB2 or Oracle. Oracle, for example, took nearly 
seven times longer to complete the test given a four-fold increase in file size. XSP took four 
times longer given a four-fold increase. 



35

Copyright  © 2001 iWay Software 35

Throughput Measurement

Load Index Opt.
??

40.0066.67115.38XSP

0.702.127.89Oracle

0.440.881.89DB2

4Gig2Gig1GigSystem

Q/Hour

This table measures system throughput as a function of database size. Each cell represents the 
number of responses a system can deliver per processing hour under ideal conditions. The table 
does not take database load time and optimization overhead into account. 



36

Copyright  © 2001 iWay Software 36

Throughput Measurement

Load Index Opt.
??

40.0066.67115.38XSP

0.702.127.89Oracle

0.440.881.89DB2

4Gig2Gig1GigSystem

Q/Hour
90.9x 

57.1x 

XSP throughput exceeds that of DB2 by a factor of 90.9 and Oracle by a factor of 57.1 in the 4 
gigabyte test.



37

Copyright  © 2001 iWay Software 37

24 Hours

Load Index Opt.
??

943.291585.902757.02XSP

12.4141.60168.08Oracle

9.5717.1843.27DB2

4Gig2Gig1GigSystem

Q/24 Hours

This table projects the number of Q9 result sets the systems would be able to produce in a 24-
hour period. 



38

Copyright  © 2001 iWay Software 38

24 Hours

Load Index Opt.
??

943.291585.902757.02XSP

12.4141.60168.08Oracle

9.5717.1843.27DB2

4Gig2Gig1GigSystem

Q/24 Hours98.5x 
76x 

Over a 24-hour period in the 4 gigabyte test, XSP generated more than 98 times as many 
responses as DB2 and 76 times as many responses as Oracle.



39

Copyright  © 2001 iWay Software 39

Recapitulation

A snapshot of database technology 
circa 2004.

• Basis: Classical set theory
(the relational algebra)
• Program/data Independence
• Cheap Storage
• Low bandwidth data access
• Slow loading
• 1970s access strategies
• Inherent inflexibility
• Limited scalability
• Limited transparency

The XSP Engine
• Basis: Extended set theory
• Strong data independence
• High bandwidth data access
• Adaptive access strategies
• Full transparency
• Highly scalable

The iWay Information Access
Accelerator

• XSP performance within …
• … a proven, industrial-
strength SQL framework




