KATEGORIES & MORFISMS (summary)

D L Childs <iis@umich.edu>

1. INTRODUCTION

The intent is to model the properties of categories and morphisms using *Kategories* and morfisims.

2. Kategories

Kategories relate properties of *objects* using *morfisms*. A specific *kategory* is defined to be a collection of certain objects and morfisms following prescribed conditions and rules.

Definition 2.1. Kategory:

A collection, **Q**, of *objects* and *morfisms* qualifies as a *Kategory* if and only if the following conditions and rules hold.

CONDITIONS:

- (1) There exists a collection of Objects, *Obj*(**Q**), denoted by **A**, **B**, **C**, ...
- (2) There exists a collection of Morfisms, $Mor(\mathbf{Q})$, denoted by $\mathbf{f}_{(\sigma)}, \mathbf{g}_{(\omega)}, \mathbf{h}_{(\tau)}, \ldots$
- (3) For each morfism, $\mathbf{f}_{(\sigma)}$, there exists a *Domain* of $\mathbf{f}_{(\sigma)}$, $dom(\mathbf{f}, \sigma) = \mathbf{A}$, and a Codomain of $\mathbf{f}_{(\sigma)}$, $cod(\mathbf{f}, \sigma) = \mathbf{B}$, denoted by $\mathbf{f}_{(\sigma)} : \mathbf{A} \to \mathbf{B}$ or $\mathbf{A} \xrightarrow{\mathbf{f}_{(\sigma)}} \mathbf{B}$.
- (4) For each pair of morfisms, $\mathbf{f}_{(\sigma)} \& \mathbf{g}_{(\omega)}$, with $\mathbf{f}_{(\sigma)} : \mathbf{A} \to \mathbf{B}$ and $\mathbf{g}_{(\omega)} : \mathbf{B} \to \mathbf{C}$ there exists a Composition, $\mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)}$, such that $\mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)} \colon \mathbf{A} \to \mathbf{C}$.
- (5) For each object, \mathbf{A} , there exists an *Identity*, $\mathbf{I}_{\mathbf{A}}$, such that $\mathbf{I}_{\mathbf{A}} : \mathbf{A} \to \mathbf{A}$.

RULES:

- (a) ASSOCIATIVITY:
- If $\mathbf{A} \xrightarrow{\mathbf{f}_{(\sigma)}} \mathbf{B} \xrightarrow{\mathbf{g}_{(\omega)}} \mathbf{C} \xrightarrow{\mathbf{h}_{(\tau)}} \mathbf{D}$, then $\mathbf{h}_{(\tau)} \circ (\mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)}) = (\mathbf{h}_{(\tau)} \circ \mathbf{g}_{(\omega)}) \circ \mathbf{f}_{(\sigma)}$. IDENTITY: If $\mathbf{A} \xrightarrow{\mathbf{f}_{(\sigma)}} \mathbf{B} \xrightarrow{\mathbf{g}_{(\omega)}} \mathbf{C}$, then $\mathbf{g}_{(\omega)} \circ \mathbf{I}_{\mathbf{B}} = \mathbf{g}_{(\omega)}$ and $\mathbf{I}_{\mathbf{B}} \circ \mathbf{f}_{(\sigma)} = \mathbf{f}_{(\sigma)}$. (b) IDENTITY:

2.1. Kat Diagrams.

As with general Category theory, the formal properties relating Kategory objects and morfisms expressed above can also be expressed pictorially.

COMPOSITION: For $\mathbf{f}_{(\sigma)}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{g}_{(\omega)}: \mathbf{B} \to \mathbf{C}$ the composition, $\mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)}: \mathbf{A} \to \mathbf{C}$, may be expressed pictorially by the following diagram.

ASSOCIATIVITY: If $\mathbf{A} \xrightarrow{\mathbf{f}_{(\sigma)}} \mathbf{B} \xrightarrow{\mathbf{g}_{(\omega)}} \mathbf{C} \xrightarrow{\mathbf{h}_{(\tau)}} \mathbf{D}$, then $\mathbf{h}_{(\tau)} \circ (\mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)}) = (\mathbf{h}_{(\tau)} \circ \mathbf{g}_{(\omega)}) \circ \mathbf{f}_{(\sigma)}$, may be expressed by the following diagram.

Definition 2.2. Identity: Every object, \mathbf{A} , has its own identity. $\mathbf{I}_{\mathbf{A}}: \mathbf{A} \to \mathbf{A}$ ($\mathbf{I}_{\mathbf{A}}$)

IDENTITY: If $\mathbf{A} \xrightarrow{\mathbf{f}_{(\sigma)}} \mathbf{B} \xrightarrow{\mathbf{g}_{(\omega)}} \mathbf{C}$, then $\mathbf{g}_{(\omega)} \circ \mathbf{I}_{\mathbf{B}} = \mathbf{g}_{(\omega)}$ and $\mathbf{I}_{\mathbf{B}} \circ \mathbf{f}_{(\sigma)} = \mathbf{f}_{(\sigma)}$, may be expressed pictorially by the following diagram.

These diagrams mimic the familiar category diagrams.

2.2. Kategories as Sets.

Kategories can be modeled by extended sets.

Definition 2.3. $Kat(\mathbf{Q})$: \mathbf{Q} is a Kategory iff:

 $\begin{array}{ll} (a) & (\forall \mathbf{f}, \sigma) (\ \mathbf{f} \in_{\sigma} \boldsymbol{Mor}(\mathbf{Q}) \& \ (\exists \mathbf{A}, \mathbf{B}) (\mathbf{A} \in_{\mathbf{I}_{\mathbf{A}}} \boldsymbol{Obj}(\mathbf{Q}) \& \ \mathbf{B} \in_{\mathbf{I}_{\mathbf{B}}} \boldsymbol{Obj}(\mathbf{Q})) \\ & (\ \boldsymbol{dom}(\mathbf{f}, \sigma) = \mathbf{A}, \ \text{and} \ \boldsymbol{cod}(\mathbf{f}, \sigma) = \mathbf{B} \), \end{array}$

(b)
$$(\forall \mathbf{f}, \sigma, \mathbf{g}, \omega) (\mathbf{f} \in_{\sigma} Mor(\mathbf{Q}) \& \mathbf{g} \in_{\omega} Mor(\mathbf{Q}) \& cod(\mathbf{f}, \sigma) = dom(\mathbf{g}, \omega))$$

 $\longrightarrow (\exists \mathbf{h}, \tau) (\mathbf{h}_{(\tau)} = \mathbf{g}_{(\omega)} \circ \mathbf{f}_{(\sigma)} \& \mathbf{h} \in_{\tau} Mor(\mathbf{Q})))$

Example: $Kat(\mathbf{Q})$

Notice that by this construction $Obj(\mathbf{Q})$ is also the collection of *Identities* of $Kat(\mathbf{Q})$.