UCID-17378

Lawrence Livermore Laboratory

SET THEORETIC DATA STRUCTURES (STDS):
A TUTORIAL

Edward W. Birss and Jeffry W. Yeh m
i 8

e
E\”

Japnuary. 31, 1977

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

(o
i

‘"Lml | I‘ﬁDD‘.‘}E'-v:' '
"i -:::l '

el I B
13 pmma R
‘ bt.‘l ' ‘
kol iddr s e

=,

o g
T b
|
ill
Woe

DISIRIBUTON OF TiHIS DOLUILINT ho MR ITE

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

FOREWORD

The Set Theoretic approach to data base management was investigated as a
potential solution to the problem of storing and manipulating large data bases.
The Set Theoretic approach had générated interest as a technique to manage
large amounts of data in a complex yet efficient manner, and a more detailed
investigation was begun. This report documents the study of an implementapion:
Set Theoretic Data Structures.

The Data Management Research Project at Lawrence Livermore Laboratory
produced this report on Set Theoretic Data- Structures as part of Contract
-[RAf 76-12 with the Transportation Systems Center of the U.S. Department of
Transportation (DOT/TSC). This report will be submitted to contract monitor

Alan Kaprelian (Information Division, DOT/TSC, Cambridge, Massachusetts).

I e s t of work
i s prepared as an accoun ™
:::\s;::; l:zy“ﬁ\e l:.):ﬁ':ed States q«;vunmem. r‘l:‘mhet
the United States nor the United States nerg)'!‘

h and D d i nor any @
their employees, nor any aof their contractors,
subcontractors, or lheil.empluyees, makes lnnﬂy‘
warranty, express or in;ph::; or assumes an_y eg;
Wbl oility o .
l::blhtz' in of any i { PP product c:
process disclosed, or represents that its use would nof
infringe privately owned tights.

T 18 lﬁr.-f".""‘“"'—“ t=, ‘I'r‘lL“M‘TED
s N

DISTRIBUTION OF

—ii-

CONTENTS

Foreword v ¢ v v v vt e e e e e e e e e e e e e
AbSEIract .« v & v v 4 e e e e e ke e e e e e e e e e e e e e
IntroduCtion . o & & ¢ v 4 e v e e e e e e e e e e e e e
Background . . . + v ¢ 4 4 4 4 4 e e e e e e e e e e e e e e
Introduction to Set Theoretic Da;a Structures (STDS)
Presidential Data Base « +« + ¢ ¢« « « o o

Some Application Programs . . . T T AT
Advantages of STDS ¢ v ¢« % v v e b e e e e .
Shortcomings of STDS v . « ¢ ¢« v v ¢ v « + W .
Conclusion . . « ¢ & v v v v« v e e e e e e e e e e e e e e
Appendix A. Complete Set of STDS-1 Commands .

Appendix B. Partial Listings of Sets in Presidential Data Base
Appendix C. Partial Listings of Raw Input Data

Appendix D. Program to Load Raw Data into STDS Data Base .

"References . . + + ¢ v v i et e e e e e e e e e

-iii-

v oW N

SET THEORETIC DATA STRUCTURES (STDS):
A TUTORIAL

ABSTRACT

Extended Set Theory as a data base management discipline has received
attention in the data base literature. Set Theoretic Information Systems
Corporétion has, for some time, marketed a data base system based on the founda-
tion of Extended Set Theory. This system is called Set Theoretic Data Struc-
tures (STDS). A series of examples shows that STDS is similar to relational
algebraic data base management systems. The advantages of STDS are its straight-
forward data base design, compact data representation, and flexible, powerful
data manipulation operators; while its limitations are its low-level primitive
user interface and the partial implementation of the Extended Set Theoretic
concepts. To make STDS very attractive, a "user—-friendly" interface should be
developed, and some distinctive features of Extended Set Theory (such as sets

of sets) should be implemented.

INTRODUCTION

The Extended Set Theoretic approach to data base managemeﬁt as proposed
by D. L. Childs has received attention as an alternative approach in recent
years. In spite of its early history (i.e., 1968), little has been published
through the years, Refs. 1 through 3 being the priﬁcipal publications.

W. T. Hardgrave, however, has also actively published in the area of Extended
Set Theory.z’—7

To show the feasibility of the approach, several software implementatrions
of data base management systems using the foundation of Extended Set Theory
have been produced. Two of these are tﬁe Set Theoretic Data Structure pack-
ages (STDS-I and STDS-0S) produced by Set Theoretic Information Systems
Corporation. STNS-T and STDS-OS operate on IBM 360/370 and Amdahl computers.

The purpose of this paper is fourfold:

e To present a brief overview of the Extended Set Theory sufficient to
motivafe the approach

e To present an introduction.to STDS-I and to note major differences in
STDS-0S

e To provide some exémple query and update programs to demonstrate the

salient characteristics and capabilities of the system

-1-

e To assess the capabilities and limitations of the systems.

To illustrate the flexibility and breadth, the examples provided in this
repért will be illustrated in STDS-I. STDS-I was chosen over STDS-0S as an
illustrative tool for two basic reasons: (1) STDS-I is more powerful, has
more operations, and is more flexible, and (2) the transportation data bases,
which are of primary interest to this contract, were installed under STDS-I.
The examples in STDS will be similar to those presented in Ref. 8 and will use
the same Presidential data base. Thus, this report, when compared with the
articles in Ref. 8, will give the reader a direct comparison and an accurate

perspective with which to view an Extended Set Theoretic implementation: STDS.

BACKGROUND

Extended Set Theory was developed by David L. Childs with support from
the CONCOMP project at the University of Michigan. Childs realized that com-
puter data structures did not have a rigorous mathematical formulation, and
began to develop a definition that would ultimately lead to practical results
when applied to the computer environment.

To achieve a mathematical definition of computer data structures,
particularly those used in data bases, Childs investigated classical set theory.
The choice of classical set theory was a natural first step, because a data
base record might be viewed as an n-tuple where each field in the fecord
represents a domain of the n-tuple. However, classical set theory has some
definite shortcomings when applied to records and:data bases. These problems
arise because of the definitioﬁ of the n-tuple.

A standard classical set theoretic definition of the oraered pair

(2-tuple) is:

<a,b> = 3{&}, {a,b} s.
This definition is extended to n-tuples in a straightforward manner:

<a,b,c **+ > = 3{3}; {a,b}, {a,b,c} eoe

When this definition is applied to computer data structures, this definition

quickly breaks down:

<1,0,1> = %{1}, {1,0}.,‘-‘{1,0,1}§>= ;{1}, {1,0}§= <1,0>

This example has demonstrated an anomaly with the classical set theoretic

definition of the n-tuple. This anomaly, however, is not the only proBlem.

-2-

Certain obvious classical set theoretic operations on n-tuples are undefined,
largely because of the definition of the n~tuple.
To achieve a better foundation for computer data structures, Childs

developed a new definition of a set. The set E is defined as:

a;’s a,’, az", a,, ...a

where aj is an atom of a set and ij is a position indicator. Note than an

n-~tuple is now just a special case of a set:

<1,0,1,2> = 11%, 0%, 13, 2%

The advantages of the definition of the set become obvious:

1. There is no problem distinguishing between like elemenﬁs with
different positions.

2. n-tuples need not be considered specially; n-tuples are special
cases of sets.

3. All classical set operations may be defined on these sets.

4. New operations on these sets may be defined.

INTRODUCTION TO SET THEORETIC DATA STRUCTURES (STDS)

It is this definition oflthe set that motivated the implementation of
the STDS.‘ The STDS software package was originally developed to experiment
- with these sets. However, once opérational, STDS proved to be quite effective;
versions nf it are currently being marketed by Set Theoretic Information
Systems Corporation. The current version of STDS limits itself to the special
case of the set where all elements of the sets are.atoms (the n-tuple case).

As alluded to previously, a collection of ﬁ—tuples can be viewed as a

table:

Name | Age

Sam
Fred

Susan

Q = <namel, age2> : T! can be viewed as
- Mary

N WU

(I' is the membership-condition that must be valid for all members of the set.
In this particular example, T could be children of Jim Smith.) T : ;

The STDS package itself consists primarily of operations on sets or :
tables. The operations that manipulate these tables can be categorized as
follows:

1. 1/0 operations

2. Set operations

3. Arithmetic operations

4., Utility functions

A relatively brief description of the available Extended Set Theoretic
Operations in STDS-I is included in Aﬁpendix A. TFor a more complete descrip-
tion see Refs. 9 and 10. To understand the remaining portions of this report,

only these few operations need to be explained:

I/0 and Utility Set Operations
GET UN

PUT , XPANS

SETFMT RMIX8

LIST XSET

QSFILE | « ‘ RS8

QRETURN LEGL

=

In order to describe the above functions, examples will be drawn from
the Presidential data base.8 For the purposes of explanation, the examples

will be limited to two tables, Presidents and Elections:

Presidents Elections
PRES#,| LASTNAME... . PRES#, | ELEC YR

. GET and PUT — Retrieve Sets from Archival Storage (i.e., archive sets)
The GET operation retrieves an already stored set (table) from secondary
storage. The set (table) must have previously been stored by a PUT operation.

The PUT operation stores a set on secondary storage.

Example

14 e bm hmm e . e - e T ————g

STDS

i
i
:
l PRESIDENTS
i
|

. [ffi1
GET

SETFMT and LIST — OQutput Operations for Reports
The SETFMT operation is used to define a particular FORTRAN-like FORMAT

— e m— w— E— = e oan - -

statement for .the purpose of printing the contents of a set (table).
The LIST command performs the actual output of the set using a user-
supplied format, or one previously defined by use of the SETFMT operation.

QSFILE and QRETURN — Get Commands from a File

QSFILE is a utility function that permits input to be read from a file
instead of the.interactive terminal. The last line of the file should contain
a QRETURN, to redirect the input from the file back to the interactive
terminal.

UN — Produce the Union of Two Sets

Given two sets, a resultant set is constructed that contains each row '

" belonging to either input set. The resultant set does not contain duplicates.

Example

UN(

Washington
Adams, J

2 | Adams J
3 | Adams JQ

XPAN8 — Expand to Sets (JOIN)

Washington
Adams J
Adams JQ

1

XPAN8 compares the first domains of two inputs, and where a match occurs,

constructs a resultant set containing the concatenation of the data fields

from the two input sets:

Example
PRES ELEC
1 |Washington, 1 11789
XPANS (2 {Adams 1 1792
2 1796

PRES-ELEC

Washington
Washington

Adams

Currently, XPAN8 is not available in STDS-0S.

1789
1792
1796

RMIX8 — Rearrange the Domains of a Set

RMIX8 rearranges domains within a set.

the rearrangement (see XSET).

President's number with his name as shown below:

RMIX8<

Washingtbn

Washington

.

An index set is used to specify

This operation could be used to permute the

XSET — Create an Index Set

XSET is used to create. an index set. An index set specifies domain
indices -(usually bytes), which form the new format of the set using RMIXS.
For example, given a set P containing the character string: .

1111111
1234567890123456

NOW IS THE TIME,
and the desire to create the resultant set Q:

1111111
1234567890123456

THE TIME IS NOW,

we would specify an index set X:

X TP] FP| LEN
1 8 9
10
131 1 4

where the domains of the index set X are:

TP — to position; the position the field is to be in the resultant set

FP — from position, the poéition the field is coming from in the input

set |

Len — the length of the field.

Once the index set X has been created using XSET, the RMIX8 operation is
performed that references P as an input set, Q as a resultant set, and X as an
index set.

RS8 — Restriction Operation

RS8 is a restriction operation that compares 8-bit domains in an input
set with those in a restriction set, and produces a resultant set that contains
rows of the input set that meet the restriction criteria of the restriction

set.

Example

PRES ELEC
1 | Washington 21 1796
2 | Adams J
3 | Adams JQ

'

RS8 on domain 1 of PRES, using ELEC as restriction set, yields:

2| Adams J

LEGL — Logical Compare of Components of a Set

LEGL performs a logical compare of two components I and J of a set,
and produces three resultant sets; SL whose components are such that I < J,

SE such that I = J, SG such that I > J.
. Example

SL SE SG

LEGL (

HOW N =
oo NN
N
(%]

The STDS User Interface

STD5-I has a rather low-level user-interface for manipulating
sets. Unlike the examples shown in the previous section the.domains are not
named and have a physical orientation. Each set has a domain declaration
that is either 8; 16, or 32 bits. The length of the n-tuples (rows of the set)
are integral multiples of the domain declaration. Because logical quantities

stored are frequently larger than the physical doﬁain declaration, logical

-8=

domains are referenced by giving the physical domain index (position) and a

length (number of domains). However, STDS~0S does permit naming of domains.

Example

Set PRES might have a domain declaration of 32, but then
PRES

1 | Washington

all logical domains (fields) would have to begin on word .
boundarics on IBM 360/370 computers. Hence a reasonable
alternative is Lo use an 8-bit (1 byte) domain declara-
tion. If 2 bytes are allocated for president number, and

ten for president's last name, then the president number

is domain 1 with length 2, and the president's last name

is domain 3 with length 10.

The physical orientation of the STDS~I package requires the user to know
the position, format, and length of the data on the storage device. In sub-
sequent examples, except where explicitly indicated, all fields are character
representation (i.e., 8-bit domains).
STDS is accessed in two possible fashions:
1. By programming language (FORTRAN or COBOL) using CALL statements.
2. By an interactive interface. This interface is extremely simple
and essentially requires the user to name the operation and to
provide the parameters. The only basic difference between this
interface and the programming language interface is that the user
need not code the four letters "CALL"; otherwise the interfaces are
.nearly identical.

To provide a comprehensive set of examples of use of STDS, more detail

about the presidential data will be presented in the next section.

PRESIDENTIAL DATA BASE

The Presidential data base contains information about the Presidents of
the United States and their associated Congresses and Administrations, plus
selected information about the States of the Union. This data base was used
in a recent issue of Computing Surveys (Ref. 8 edited by E. Sibley), which
contains tutorials on the various data base management disciplines including
the relational, CODASYL and hierarchic data base approaches. In addition,

this data base has also been implemented under IBM's Information Management

-9-

System (IMS).ll Using this data base as our example, we will provide the reader

with a vehicle for comparing the STDS system with other data base management

systems.

A second advantage of the Presidential data base is that the information

is well recognized and understood by a majority of people in the United States.

This data base is small enough to be manageable but still complex enough to

have different types of records and relationships. These include items,

groups, repeating items, repeating groups, one-to-many relalionships, and

many-to-many relationships.

The implementation of the Presidential data base under the STDS system

was divided into three steps:

1.
2.

3.

In

The study of the raw data and their interrelationships
The design of an STDS data base and the loading of raw data into the
STDS data base

The design and implementation of the application programs.

this section, we will discuss step 1 in detail. Steps 2 and 3 will

be presented in the subsequent sections.

Presidential Data

The raw data available in the Presidential data were divided into five

groups:
1.

Personal data on the Presidents: name, birthdate, state-born-in,
height, party, college, ancestry, religion, occupation, date-of-
death, cause-of-death, father, mother, wife, date-of-marriage,
number—-of-children, election-year, administration-number, Congress-
number.

Data for each Presidential Administration: administration-number,
inauguration date, president, vice-president, new-states-admitted
to the Union during that administration.

Data on States: state-name, year—admitted, capital, area, area-
ranking, population, population-ranking, number—of—electoral—votes,
cities and cily-populations.

Data on each Congress:. congress—-number, the major-parties and the
number of their senators in the Senate, the major-parties and the
number of their representatives in the llouse.

Data on cach election: year, winner, winning-party, winner's total-

votes, loser, losing-party, loser's total-votes.

-10-

A detailed description of the Presidential data base can be found in
Ref. 8.

Relationships among Presidential Data Groups

The relationships among the Presidential data groups can be divided
into two categories: the relationships between a group and its elements,
and the relationships among groups.

Relationships between group and its elements — The relationships between

each group (as mentioned in the above section) and its elements can be

described in Table 1.

Table 1. Relationships between groﬁp and its elements.

Degree of
Element . relationship
A. President

Name, birthdate, state-born-in, height, party,
college, ancestry, religion, date-of-death,

cause-of-death, father, mother . . « « « « « « « & « o « « ¢« « « « 1:1
Occupation . . . & v v 4 & v 4 4 4 s o 4 e e 4 e e e e e s e . Llimym>0
Wife, date-of-marriage, number—of—children e e e i e e e e s limy,m >0
Election-year v v ¢« v ¢« « v o« « o o« s o o e o o o o o . Linyn>1
Administration-number ., ¢ .+ 4+ e s e e+ . Llingn>1
Congress=—number + + v + 4« 4 s 4 4 e 4 e e e e w .. Llin,n>1

B. Administration

Administration-number, inauguration-date,
president, vice-president , , , ., .

S - |

New-state—admitted . ., . l:m, m >0

. . [. -

C. States

State-name, year—admitted, capital, area, area-ranking,
population, population-ranking, electoral-votes , , , 1l:1

City, city-population l:in, n >1

- - . . . -

_D. Congress

Congress—nuUMbET . . « ¢ & + 4 ¢ 4 & 4 s 4 e 4 e e e e e e e e e 0o L2l

Major-party in Senate, number—of—senatoré e e e e s e s e e e s Llin, n 2_1

Major-party in House, number-of-representatives l:n, n 2,1
T E. Elécfion

Year, winner, winner's party, winner's votes + .+ . . 1l:l

Loser, loser's party, loser's votes « « . « + +» Llin,n>1

-11-

Relationships among Groups — The relationships among the five data

groups are described in Fig. 1.

STDS Implementation of Presidential Data Base

When the constrained definition of the extended sets allowed by STDS is
given, the primary design decisidns in developing the presidential data base
are involved in the design of the n-tuples. One of the primary characteristics
of n-tuples is that they have a fixed length. Consequently, one of the first
design criteria that must be applied to the Presidential data is the factoring

out of all repeating data. This step yields 13 sets:

|
ST. PRES

= [pres#, pkey, last-name, first-name, initial, month-born, day-born,
year-born, nativefstatefkey,.state—born—in, height, party, college,
ancestry, religion, month-died, day-died, year-died, cause-of-
death, father's name, mother's-name]
ST.OCCUP = [pres#, occupation]

ST. SPOUSE = [pres#, spouse;name, month-married, day-married, year-married,
number-of-children]

ST.EYEAR = [pres#, election-year]

ST.PADM

ST.CONG

ST.ADMIN = [administration-number, month-inaug, day-inaug, year-inaug, pkey,

[pres#, administration-number]

[pres#, congress-number]

vp-first-name, vp—last-name]-

ST.NSTATE = [administration-number, new-state-admitted, state-key]

ST.STATE = [state-key, state-name, year—admitted, capital, area, area-ranking,
population, pop-ranking, electoral-votes]

ST.CITY = [state-key, state-name, city-name, c¢ity-populatlon]

ST.SENATE = [congress-number, party, number-of-senators]

ST.HOUSE

ST.ELECT

[congress-number, party, number-of-representatives]

[election-year, year, winner, winner's party, winner's-votes,

loser, loser's party, loser's-votes]
’ P.y.

Partial listings of the contents of these sets are found in Appendix B.
To make this example more concise, the ST.EYEAR and'ST.ELECT sets

could be modified to factor out repeating winner information:

ST.EYEAR = [pres#, election-year; year, winner, winner's party, winner's

electoral-votes]

ST.ELECT = [eyear, loser, loser's party, loser's-electoral-votes]

-12«~

Election

(1:1)
(1:0)

>E1ection
won {(1:m)
Associated
Election

Associated President
Administration

(1:1)

Presidential
headed
(1:7)

- Associated Election (1:1)

Associated Congress (1:1)

Congress

- S ~ -Congress
s headed

(n:k)

Presidential
headed (n:k)

or

Admiinistration
headed (1:n)

Administration[®

State admitted during the Administration
(1:1) 4 State

- o
New state admitted (1:m)

Note that the integer m =0 and the .integers n,k = 1.

Fig. 1. Relationships among five data groups.

-13-

The relationships between sets are symbolically represented by data -
values. For example, the many-to-many relationship between congress and
président is represented using the key fields of the sets ST.PRES (pres#) and
ST.CONG (congress—number) dynamically at query time. To find all congresses
associated with a president, XPAN8 ST.PRES with ST.CONG; to find. all congresses
associated with a president, XPAN8 ST.CONG with ST.PRES.

The relationships in the STDS implementation are diagrammatically
represented in Fig. 2. Notice that factoring out all répeating data into
additional sets has decomposed M:N relationships into 1l:n and m:1 relationships.
Thus the simple operation of factoring out repeating data results in straight-
forward data base design. '

As mentioned previously, the STDS-I system does not provide a symbolic
naming facility. 1In fact, if the domain declaration is 8-bit, first-name in
the set ST.PRES is referred to as the field that is 10 domains long and begins
at domain 25.

The set listings in the Appendix B show that all the set data are charac-
ter strings. Obviously, the numeric fields could be compacted by using binary
representations. Another improvement would be to replace all state names with
state-identifiers, thereby compacting state names. A new set which establishes
a correspondence between state identifier and state name could also be
constructed.

Data Base Design in STDS is a fairly straightforward process of factoring
out repeating data. Once the sets have been designed, the raw data must be
converted into the set formats. For the presidential data base, the raw
data (Appendix C) was loaded into an STDS format by a FORTRAN program (Appendix
D). After the sets have been filled with data, they may be manipulated. The

next section will show how such data can be manipulated.

SOME APPLICATION PROGRAMS -

After the data base has been loaded into the STDS system, a series of
application programs can be written to retrieve and to update the data base.
There applicAation programs can bg_written and stq;ed in a command file and
later activated through the command QSFILE. They can-also be typed in one
by one at the time using the STDS interactive interface. For the purpose of
this discussion, the latter is présented in this section; however, for human

and machine efficiency the former method is recommended.

~l4-

\

ST.CONG

/

ST.EYEAR

ST.ELECT

ST.SENAT
ST.HOUSE
ST.PRES \
\\\ ST.SPOUSE
\
ST.OCCUP ST.NSTATE ST.STATE
, ST:CITY
ST.PADM | >————=| sT.ADMIN

~15-

Fig. 2. Relationships in STDS implementation.

Some examples presented in this section are also found in Ref. 8. A
comparison of the STDS and the DBTG approach based on one of these examples
is presented in a later section, "Advantages of STDS."

Sample Retrieval Programs

Four examples are presented in this section. In each example, the pur-
pose of the program is first stated, and then a set—approach algorithm is

described in detail. Finally, an STDS-I program is presented.
Example 1 — The first example presented here is the same example used

by R. Taylor in Ref. 8. The problem is to find all states that have more
than one president as a native son, and then to print out the names of those
states together with the numbers of the presidents who were born in that state.

Our algorithm* for solving this problem is to form a set of tuples
[state~born-in, president's-last name, first-name, initial] from the ST.PRES
and then to tabulate the number of presidents born in the same state. The
result from this tabulation is a set of pairs of the state-born-in and the
number of presidents. A listing of this set is the final result to this
problem. An example of an STDS-1 program for implémenting the above algorithm
is presented in Fig. 3.

All elements in an STDS set are sorted by the lexicographical order of
their first domain. Therefore, the final listing is in alphabetical order by
the names of the states. If the order by the president's number is desired,
one may simply switch the position of the pair [state-born-in, number-of-
presidents] to that of the pair [number-of-presidents, state-born-in], and then
print out the sct.

Example 2 — The second example is to list all the occupations together
with the presidents' names in the alphabetical order of occupations.

~ This problem involves acquiring access to two sets, namely the sets
ST.PRES and ST.OCC, because the set ST.0CC contains only the president's
number (first, second...) but not the president's name.

Our algorithm for solving this problem involved the following three
steps: ‘

1. Extract a set of [pres#, president's-last-name, first-name, initial]

tuples from the set ST.PRES, and call it set P.
2. XPAN8 (Join) the set ST.OCC togethgr with the set P based on the

president's number in both sets. The result of this operation is a

Those interested in a comparison between DBTG and STDS approaches may compare
the difference between the algorithm presented here and the one lIn K. Taylor's

paper.8

-16-

STDS-I Commands Commentary

GET (P,'ST.PRES') P <= ST.PRES

XSET (X)

1, 83, 10 . state-born-in

11, 13, 30 : president's last-name, first-name, initial
$ENDFILE

RMIX8 (1, P, X, Q, 1) . Q « [state-born-in, president's-name]

XTAB (10)

DMR (1, 1, Q, R) R « [state-born-in, number -of -president]

LIST (R, 1, 1000, '(2X, 10Al, 4X, I4)")

Fig. 3. STDS-I commands for Example 1.

-17-

set of [pres#, president-occupation, president's-last name, first-
name, initial] tuples. Let this set be named PC.

3. RMIX8 (Project) the set PC into a set of [president-occupation,
president's-last-name, first-name, initial] tuples. A listing of

this set is the result of this problem.

A portion of an STDS-I program for this algorithm is presented in Fig. 4.

Note that, in the result of the above program, the occupations are
listed all the time, even if they are repeated continuously. In some cases,
one may want to list the occupations only when they first appear in the list.
This problem may be solved by using a FORTRAN program to list the resulting
set;from STDS in any desired format. It is not recommended that this problem
be solved by using STDS commands; to solve this problem in STDS, one would
have to repeat the following procedure a number of times:

e Get ome occupation from the set ST.OCC, and then find all the presidents
who have this occupation.

The number of repetitions, N, is equal to the number of different
occupations in the set ST.OCC. This procedure by itself is not a simple one
(a similar example is presented in the next problem). Adding to the complex-
ity is the fact that, each time this procedure is invoked, gaining access to
the set ST.PRES is required at least once. Thus, a total of N accesses to the
set ST.PRES would be required.

A good rule of thumb iﬁ programming with STDS is to remember that the
basic unit in STDS is a set (e.g., a file) but not an element (e.g., record).
To best utilize the power of STDS, one should retrieve information through
sets, but not through elements.

Example 3

The purpose of this example is to illustrate the retrieval of information
from an STDS on an element basis. As noted in the previous example, it is not
recommended that information be retrieved that would require the traversal
of one element at a time in an STDS set.

The problem illustrated by this example is to find all the Congresses
served by a given president, and then to print out the given president's
number followed by the Congressional term, and the number of senators and the
number of members of the House of Représentatives in each party.

Qur algorithm is, first, to find the president number of the given
president. Next, we use this president number to construct a set of all

Congresses with whom he served. Then we extract Congress numbers one by one

-18=

STDS-I Commands

GET (PRES,'ST.PRES')
XSET (X)

1, 1, 2

3, 13, 30

$ENDFILE
RMIX8(1,PRES,X,P,1)
GET (OCC,'ST.0CC')
XPAN8 (2, OCC, PRES, PC, 1)
XSET (Y)

1, 3, 40

$ENDFILE

RMIX8 (1, PC, Y, R, 1)

Commenggzz

PRES <= ST.PRES

pres#
president's last-name, first-name, initial

P « [pres#, president's name]
0CC <= ST.OCC
PC « [pres#, occupation, president's name]

occupation, president's name

R « [occupation, president's name]

LIST (R, 1, 1000 '(2X, 10Al, 4X, 30Al1)')

Fig. 4. STDS-I commands for Example 2.

-19-

from this set, and use this Congress number to get the Congress term and the
number of senators and the number of the House of Representatives in each
party. More detailed procedures are presented as follows:
1. For the given president name, extract the corresponding president
number from the set ST.PRES.
2. Use the president number extracted from 1, to construct a set of
Congresses with whom he served.
3. For each Congress number in the above set perform the following
steps:

(a) Based on the given Congress number, extract a subset from
the set ST.SENATE that contéins only the given Congress
number.

(b) Restrict (Project) the [party, number—-of-senators] out from
the above set and print the resulting set.

(c¢) TFor the same Congress number, extract a subset from the set
ST.HOUSE that contains only the given Congress number.

(d) Restrict (Project) the [party, number-of-representatives] out
from the above set and print the resulting set.

An STDS-I program for the above algorithm is presented in Fig. 5.

Example 4 — The purpose of this example is to show the power of STDS
through a complex problem. The problem is to find all presidents such that
the "majority party'" in the Congress is different from the president's party.
We defined a majority party in the Congress as the majority party in both the
Senate and the House of that Congress. Because the information about the
Senate and the House are stored in two separate sets (ST.SENATE and ST .HOUSE),
we have to find the ﬁajority party of each Senate and that of each House, and
then we have to determine the majority party in the Congress, if any. After
finding the majority party in the Congress, we could find the president it
served and compare the president's party with the congressional party. The
operations required to accomplish this query are presented in Figs. 6a and 6b.

Sample Update Programs

In addition to the retrieval of information from a data base, updating
a data base is another primary function of the data base management system.
The purpose of updating a data base is to keep the information in a data base
current. An example of this is the updating of the Presidential Data Base in
order to incorporatc a new state just admitrted to the Union. Another example

of updating the Presidential Data Base is the addition of the names of senators

-20-

STDS-I Commands

GET (PRES, 'ST.PRES')
V$ ($A,8,NAME)

LINCOLN

RSEQ (1, PRES, NAME, X)

LIST (X, 1, 10, (2X, 130A1)")

Commentary

PRES <= ST. PRES

type in president's name

X «—{PRES llast name = NAME}

16 ,LINCOLN, , , LINCOLN, \ ABRAHAM, s oapnnnnn FEBRUARY A pannanannl2” """

V$($A, 8,PRENUM)

16

GET (CONG, 'ST.CONG')

RSEQ (1,CONG, PRENUM, X)

LIST (X, 1, 10, '(2X, 20A1)")
16 C37

16 C38

16 C39

GET (SENATE, 'ST.SENATE!)

GET (HOUSE, 'ST.HOUSE')
V§ ($A, 32, CONNUM)

C37

repeat\ RSEQ (1, SENATE, CONNUM, P)

for
C38

c39 LIST (P, 1, 10, F1)

RSEQ (1, HOUSE, CONNUM, Q)

LIST (Q, 1, 10, Fl1)

type in president number
CONG <= ST.CONG

X +-{CONG l pres# = PRENUM}

SENATE <= ST.SENATE

HOUSE <= ST.HOUSE

type in congress number

P <« {SENATE cong# = CONNUM}

F1 = SETFMT (8,'(2X, 20Al, 2X, 10Al)

Q +-{HOUSE cong# = CONNUM}

Fig. 5. STDS-I commands for Example 3.

—21-

STDS-I Commands Commentary

(a) Find a set of majority parties in each Senatc

GET (SENATE, 'ST.SENATE') SENATE <= ST. SENATE

XSET (X) :

1, 1, 4 cong#

5, 15, 10 number-of-senators

$ENDFILE

XSET(Y)

1, 40, 0

$ENDFILE

TABF (4, Y)

RMIX8 (1, SENATE, X, SMAX, @) SMAX <« |cong#, highest-number-of-senator]

XSET (2)

1,1, 4 . cong#

5, 15, 10 # of senators

15, 5, 10 party

$ENDFILE

RMIX8 (1, SENATE, Z, XSENAT,@) " XSENAT « [cong#, # of senators, party]

RS8 (1, XSENAT, SMAX, SMAJ) SMAJ « [cong#, highest-number-of-senat'o"rs,
(b) Find a set of majority parties in each House PartY1

GET (HOUSE, 'ST.HOUSE') HOUSE <= ST.HOUSE

TABF (4, Y)

RMIX8 (1, HOUSE, X, HMAX, @) HMAX <« [cong#, highest-number-of-reptesen-

. tatives]
RMIX8 (1, IIOUSE, Z, XHOUSE, @) YHNISE « [cong#, # of representatives,
party]

RS8 (1, XHOUSE, HMAX, HMAJ) HMAJ « [cong#, highest # of rep., party]

(c) Find a set .of majority parties in both the Senate and the House

XPAN8(4, ‘SMAJ, HMAJ, CMAJ,2) CMAJ « [cong#, # of maj. party's senators,
: , maj. party, # of maj. party's
rep., maj party]

LEGL (CMAJ, 15, 10, 35, 10, SL, SE, SG) compare majority party in the Senate
: and the House

XSET (X))

1, 1,4 ‘cong#

5, 15, 10 . party

Fig. 6a. First half of STDS-I commands for Examﬁle 4.

22

$ENDFILE

RMIX8 (1, SE, X, MAJ, 1) MAJ <« [cong#, maj.-party in both
: the Senate and the House]

(d) Construct a set of majority parties in the Congress and the president
they served

!
GET (CONG, 'ST.CONG') CONG <= ST.CONG

XSET

1, 3, 4 cong#

5,1, 2 pres#

$ENDFILE '

RMIX8 (1, CONG, XCONG, 1) XCONG + [cong#, pres#]

XPAN8 (4, XCONG, MAJ, MAJ‘CON, 10) MAJCON « |cong#, pres#, maj.-party]
XSET (X)

1, 5, 2 pres#

3,1, 4 cong#

7, 7, 10 R maj.~party

$ENDFILE

RMIX8 (1, MAJCON, MAJOR, 1) MAJOR <« [pres#, cong#, maj-party]

(e) Find a set of president's names and their parties

GET (PRES, 'ST.PRES') PRES <= ST.PRES

XSET (X)

1, 1, 2 pres#

3, 13, 30 president's lasf,name, first-name, init.
33, 103, 10 ' president's party

$SENDFILE

RMIX8 (1, PRES, X, PPARTY, 1) PPARTY +« pres#, pres-name, pres-party]

(f) Find a set of majority parties in the Congress which is not the president's
party

XPAN8 (2, PPARTY, MAJOR, PCPART, 1) PCPART + tpres#, pres- name, pres-party,
cong#, maj-party]

1EGL (PCPART, 33, 10, 47, 10, SL, SE, SG) compare pres-party and maj-party

UN (SL, SG, RESULT) RESULT is a subset of PCPART where
pres party different with major
party

LIST (RESULT, 1, 999, '(56Al1)')

Fig. 6b. Second half of STDS-I commands for Example 4.

-23-

and congressmen, as well as the names of the newly elected president and his
administration.

Updating an STDS data base involves the change of the contents of some
sets in the data base. In order to change a set in STDS one has to create a
differential set12 for the set to be changed. A differential set is a set of
all updated elements of a given set. ‘For example, a differential set of a set
of states, ST.STATE, may be a set of all newly admitted states. To add these
new states into the set ST.STATE is to ''union" the set ST.STATE and its differ-
ential set. Similarly, to delete some elements from a set is to subtract its
differential set from the original set. As for the content-modification or
replacement of some elements in a set, one can simply create a differential |
set consisting of both the elements to be replaced and ‘the.:elements to replace
them; at that point, the symmetric difference between the original set and
its differential set equals the updated set. For example, the original set
A = {a,b,c} and the updated set is expected to be B = {a,d,c}. One can create
a differential set D = {b,d}; then the summetric difference between the sets
A and D is equal to the updated set; i.e., AAD = {a,d,c} = B.

Differential sets may be used as the temporary sets for updating the
data bases. They can also be used as a permanent '"errata list" for the data
base in the following sense. Rather than update a data base each time a
change is desired, a small collection of modified records is maintained on
the differential sets. If the changes to the data base continue, the differen-
tial sets grow to a sufficient length that the updating costs become justifiable,
at which time a physical update to the data base may be performed. This
method significantly reduces the update costs and has been widely used in
many data base applications.12 STDS is one of the best structures for imple-
menting the concept of the differential sets.

In this section we will illustrate two examples of updating the STDS-I
Presidential data base, one using physical updating and the other using
differential sets.

Example 5. — To Admit a New State — Referring to the discussion of

the Presidential data base, we recall thgt to enter a new state into the data
base we have only to know the administration number under which the state is
admitted. No other set except ST.NSTATE, ST.STATE, and'ST.CITY in the data
base need be affected by the addition of a new state. For the sake of sim-
plicity, we assume that the area ranking and the population ranking have not

been changed by the addition of fhc new state.

—24e

OQur algorithm to admit this new state is to create three state sets
that contain the information of the new state with respect to the three sets,
ST.NSTATE, ST.STATE, and ST.CITY. Then, we replace these three old sets,
raspectively, by the union of :the old set and its corresponding new state set.
An STDS-I program for this example is presented in Fig. 7.

Example 6. — To Update Presidential Data Base after Each General

Election — After each general election, a new president, a new administration,
a new congress, and new election results will be added into the data base.

As may be recalled from the section "Presidential Data Base," ten out of the
total of thirteen sets have to be updated. The majority of these updates
require simply inserting one or two new elements intoAan existing set, but
this insertion involves the creation of a new set (physical file), copying

the entire old set plus the new elements into the new set, and then destroying
the old set. The cost of these steps may be very expensive, and thus the
concept of differential sets may be beneficial to the overall system operation.

To implement the concept of differential sets, one has to create a small
data base containing all new records from the election.

Note that this differential data base is considerably smaller than the
original data base and therefore the creation cost and the future updating
costs are greatly reduced. Some other advantages for having such a small
differential data base are presenfed in Ref. 12. An example of the STDS-I

program for creating this differential data base is presented in Figs. 8a and

8b.

ADVANTAGES OF STDS

In this and the following section the advantages and the potential
problems of the STDS system are presented based on the experiences and opinions
of the authors.

In the design of an STDS datg base, one is immediately impressed by the
simplicity of its design task. The STDS uses the key-values to indicate the
relationships among sets, and the actual linkages of these relationships are
formulated at query-time. This approéch eliminates the problem'of deciding
the physical linkages at the design phase, and leaves only one task to the
designers, namely the partitioning of a data base into a collection of minimal

relevant ccecte.

~25-

STDS-1 Commands) Commentary

(a) Update ST.NSTATE

DATA.(NUNSTA, 8, 24, '(24A1)' Read in NU.NSTATE

GET (NSTATE, 'ST.NSTATE') _ NSTATE <= ST.NSTATE
UN(NSTATE, NUNSTA, NSTATE) ' NSTATE < NSTATE U NUNSTA
PUT (NSTATE, 'ST.NSTATE') ' NSTATE => ST.NSTATE

(b) Update ST.STATE

DATA (NUSTATE, 8, 90m '(90A1)', 'NU.STATE') Read in NU.STATE

GET (STATE, 'ST.STATE!') STATE <& ST.STATE
UN (STATE, NUSTATE, STATE) _ STATE < STATE U NUSTATE
PUT (STATE,'ST.STATE') ' ' STATE => ST.STATE

(¢) Update ST.CITY

DATA (NUCITY, 8, 40, '(40Al), 'NU.CITY') ~ Read in NU.CITY
GET (CITY,'ST.CITY') | | CITY<= ST.CITY
UN (CITY, NUCITY, CITY) ~ ‘ CITY <« CITYUNUCITY
PUT (CITY, 'ST.CITY') | c CITY = ST.CITY

Fig. 7. STDS-1 commands for Example 5.

-26-

STDS-1 Commands (Comments are prefaced by :)

(a) Create a differential set D.PRES for the set ST.PRES
DATA (NUPRES, 16, 101, '(101a2)", 'NU.PRES')

PUT (NUPRES, 'D.PRES')
Future reference to ST.PRES has to be changed to (PRES A DPRES)

(b) Create a differential set D.OCC for the set ST.OCC
DATA (NUOCC, 32, 3, '(3A4)', 'NU.OCCUP')

PUT (NUOCC, 'D.OCCUP')
Future reference to ST.OCCUP has to be changed to (OCCUP A DOCCUP)

(c) Create a differential set D.SPOUSE for the set ST.SPOUSE
DATA (NUSPOU, 32, 13, '(13A4)', 'NU.SPOUSE')

PUT (NUSPOU, 'D.SPOUSE')
Future reference to ST.SPOUSE has to be changed to (SPOUSE A DSPOUSE)
- . |

(d) Create a differential set D.EYEAR for the set ST.EYEAR
DATA (NUEYEA, 32, 2, '(2A4)', 'NU.EYEAR')

PUT (NUEYEY, 'D.EYEAR')
Future reference to ST.EYEAR has to be changed to (EYEAY A DEYEAR)

(e) Create a differéntial set D.PADM for the set ST.PADM
DATA (NUPADM, 16, 3, '(3A2)', 'NU.PADM')

¢

PUT (NUPADM, 'D.PADM')

Future reference tO'ST.PApM has to be changed to (PADM A DPADM)

1

Fig. 8a. First'héifzdf STDS-T commandé for Example 6.

-27-

t

(f) Create a differential set D.CONG for the set ST.CONG
DATA (NUCONG, 16, 3, '(3A2)', 'NU.CONG'}

PUT (NUCONG, 'D.CONG')
Future reference to ST.CONG has to be changed to (CONG A DCONG)
(g) Create a differential set D.ELEC to the set ST.ELEC

DATA (NUELEC, 8, 75, '(75Al1)', 'NU.ELEC')

PUT (NUELEC, 'D.ELEC')
Future reference to ST.ELEC has to be changed to (ELEC A DELEC)
(h) Create a differential set D.ADMIN for the set ST.ADMIN

DATA (NUADMI, 8, 63, '(63A1)', 'NU.ADMIN')

PUT (NUADMI, 'D.ADMIN')
Future reference to ST.ADMIN has to be changea to (ADMIN A DADMIN)

(i) Create a differential set D.SENATE for the set ST.SENATE

DATA (NUSENA, 32, 6, '(6A4)', 'NU.SENATE!)

PUT (NUSENA, *'D.SENATE')
Future reference to ST.SENATE has to be changed to (SENATE A DSENATE)
(j) Create a differential set D.HOUSE for the set ST.HOUSE

DATA (NUHOUS, 32, 6, '(6A4)', 'NU.HOUSE')

PUT (NUHOUS, 'D.HOUSE')

Future reference to ST.HOUSE has to be changed to (HOUSE A DHOUSE}

Fig. 8b. Second half of STDS—I.cqmmands for Example 6,

-78~

The use of key values to indicate the relationships among sets also
provides a higher degree of data independence, which allows the user to update
(i.e., to add, to delete, or to replace) relations independently of one
another without tedious modifications of pointers which link one set to
another set. Key values also allow the user to restructure a data base into
any number of sets in order to reduce the physical storage requirements or
the processing time of a data base. The set theoretical approach offers
further potential storage reduction through the representation of a set in
terms of its implicit membership condition (e.g., a function or a statement
that defines the mémbership of a set). However, this ability for storing an
abstract set has not been implemented in either version of the current STDS
systems. .

The representation of a data base as a collection of sets in STDS-I
encourages the manipulation of data on a large aggregate of data. It is
sensible to perform the same operations on each element in a set at a time
because each set contains all relevant data. To illustrate this point further,
let us compare the STDS-I and the DBIG implementations8 of the same problem
as presented in Example 1. The DBTG implementation requires a loop of nine
statements, and the STDS-I implementation requires only two statements without
a loop. The basic difference is that the DBTG approach operates on one record
at a time, while the STDS approach operates on a set of relevant records at
.one time. It is also worth noting that in the STDS approach, the user does
not have to be bothered with traversing pointer chains (e.g., DBTG sets) or
any other physical linkages.

The extanded set operations provided by the STDS-I are a powerful set
of data manipulation operations equivalent to the power of the relational
algebra. This set of operations could be used as a basis for a high level
nonprocedural language for retrieving information from a collection of sets.
It could also be used as a basis for implementing a high-level relational
calculus language.

The STDS-I provides two ways to access these opera.tions: one through
an interactive interface, and the other through FORTRAN or COBOL call state-
ments. The ahility to access these operations through FORTRAN (or COBOL)
call statements is required for some classes of queries that cannot be directly
answered by using STDS commands (as shown in Example 2). In-addition, FORTRAN

(or COBOL) provides a simple extension to new data manipulation functions and

=20=

a linkage to any application program, such as a graphic or statistical

program.

SHORTCOMINGS OF STDS

Although the STDS system has many advantages, it also has some disadvan-
tages. The principal disadvantage of STDS~I is its low-level user interface.
This interface, as previously indicated, does not allow the user to symbolically
name domains. Instead, the user references a logical domain by a physical
domain index (e.g., byte offset) and a length (number of bytes). Not only is
this cumbersome, but it forces the user to be cognizant of the data represen-
tation. A related problem, domain declaration, requires the user to stipulate
the number of domains in terms of physical quantities, in this case, bytes,
halfwords, and fullwords. ‘

STDS-0S does permit the user to reference logical domains symbolically.
In STDS-0S, a uniform domain declaration is presented to the user; therefore,
physical quantities used to store the address data are transparent to the user.
Although STDS-0S permits naming of components of sets (columns), its principal
disadvantage is i;s orientation toward operations within sets but ﬁot among
sets. Of primary concern, the XPAN8 operation (JOIN) is not present. The
lack of the XPAN opefatipn makes it impéssible to perform queries that encom-
pass elements from more than one set.

Certain operations require that a particular domain be the (physically)
first domain before the operation is performed. This requirement obliges the
user to perform a cumbersome series of operations:

1. XSET command to express the rearrangement

2. RMIX8 command to do ‘the rearranging

3. XPANS8 operation

4. Another XSET

5. Another RMIX8 to transform the set back to its original orientation.

The shortcomings of the user interface are also demonstrated by the
primitive report writer facilities. The facilities in STDS-0S (e.g., RPG)
scarcely compare with commercial report writers; STDS-I is void of any such
features.

Similar to the relational systems, the user is burdened with some of the
same problems that face the relational DBMS community. Two chief problems-are

normalization and procedural queries. Normalization is the process of

-30-

constructing n—tuples in such a manner that no repeating data, functional
dependencies or transitive dependencies exist within an n-tuple. In STDS,
this process is left up to the user. Procedural queries, such as those that
print out the following report, are difficult to perform (see Examples 2 and

3):

Adams J
Butcher
Baker

Candlestick maker

Adams JQ

Fireman

The difficulty stems from the fact that in STDS and in relatioﬁal systems,
one works with sets, not just with records.

There are some miscellaneous disadvantages of STDS-I, such as not hand-
ling variable length data, not providing recovery or rollback facilities, and
no security facilities (STDS-0S does permit passwords on sets, however).

Finally, STDS does not present to the user all the power of Extended
Set Theory that would distinguish it from a relational system. The principal
difficulty is the inability to have sets of sets. This inability hinders one's
ability to compact data, to have automatic differential sets, and to have
abstract sets — sets where a function is stored to generate data values rather
than the data instances itself. 1In its present form, STDS does not provide

a user with more capabilities than a relational system.

CONCLUSION

STDS provides a user with a very flexible and extremely powerful tool
with which complex manipulation of data can be performed rapidly. 1In spite
of its flexibility, STDS-I does not provide the user with a sufficiently
"ugser-fricndly" interface to allow noncamputer scientists to easily work with
a data base. STDS-0S is a step in the right direction, but it'currently'has
insufficient power to handle relationships between sets.

The potential capabilities of the Extended Set Theory seem to be very
powerful and attractive; however, the current implementations do not provide

the user with all the capabilities of Extended Set Theory. Almost all the

-31-

features (such as sets of sets and abstract sets) that would distinguish STDS
from relational systems are not provided.

- Because of its low-level nature, STDS does not have a sufficiently
"user-friendly" interface for unsophisticated users. It is, however, a system
that appears to be of interest to designers of relational data base management
systems, and could possibly provide a more efficient means of implementing a
relational system.

Despite some drawbacks in STDS, the Extended Set Theory has good poten=’
tial, and, therefore, we recommend that:

1. A "user-friendly" interface be developed

2. Distinctive features of the Extended Set Theory be implemented.

Should these two additional features be incorporated into STDS, it

would be a very attractive system.-

-32-

APPENDIX A.
Complete Set of STDS-I Commands

-33~

Input/Output:

ATOS
CORE
DASD
DATA
ENTER
FREE
GARRAY
GBLOCK
GET
PARRAY
PUT
SGET
SINK
SPUT
STODS
UNIV
VOL
LIMIT
TARRAY
TGET
TPUT

Updating and

nD
DMR
INDX
INDEX
INUM
ISBMAX
KDMR
MIX8
MULTU
MULTU1
REFMT
RMIX8
SETFMT
UPDT
UPDT1
XPANS

ZPAK

STDS. I Operations

transforms an array to a set

transfers a set from peripheral storage into core
specifies whether sets are forced to core or disk

allows formatted entry of data

constructs- a set

releases a set from the universe

constructs a set from an array

transfers a block of elements from a set into an array
enters a set from peripheral storage

writes a set to a file

stores a set

unscrambles and enters a set from peripheral storage
creates a permanently null set, or sink

scrambles and stores a set

transfers a set to a dataset

opens a universe

specifies the MTS volume on which a dataset is to be created
initializes a tape

retrieves a set which has been stored on tape in array form
retrieves a set which has been stored on tape in set form
stores a set on tape in set form

Expanding:

redefines the domain declaration of a set

performs a domain restriction

creates an index set (STDS*)

creates an index set (FORTRAN)

converls portions of a set's compoments to integers
redefines implicit set and buffer maxima

creates a keyed domain

rearranges the domains of an n-tuple using an index set
performs a multiple update

performs multiple modification of bit-domains

reformats a set

rearranges specified domains of an n-tuple

associates an index with a format

updates specified values in a set

updates a one-bit domain in a set

expands the components of one set with domains from another
set's components

removes specified zones from a set and packs the results

Restrictions and Set Operations:

BRSA
BRSL
BRS8

DIN
DRL
DSD
DUN
IN
LEGA
LEGL
NRS1
NRS8
RL
RSEQ
RSGEA

RSGEL
“RSGTA

RSGTL
RSLEA

RSLEL

RSLTA
RSLTL
RSNE
RS1
RS8

SD
SUBSET
1IN

performs
performs
performs
domains
returns
returns
returns
returns
returns
performs
performs
per forms
per forms
returns
performs
performs
by a con
performs
constant
performs
constant
performs
performs

an arithmetic between restriction
a logical between restriction
a logical between restriction forcing eight-bit

a domain intersection of two sets
a domain relative complement of two sets
a domain symmetric difference of two sets
a domain union of two sets
the intersection of two sets
a arithmetic comparison of two components
a logical comparison of two components
a not restriction on one-bit domains
a not restriction
the relative complement of two sets
an equal-to restriction by a constant
an arithmetic greater-than-or-equal-to restriction
stant
a logical greater-than-or-equal-to restriction by a

an arithmetic greater-than restriction by a

a logical greater-than restriction by a constant
an arithmetic less-than-or-equal-to restriction by

a constant

performs
constant
performs
performs
performs
per forms
performs
returns
returns
returns

Arithmetic Operations:

BITS
CARTH
SUM

v$

a logical less-than-or-equal-to restriction by a

an arithmetic less-than restriction by a constant
a logical less-than restriction by a constant
a not-equal-to restriction by a constant
a restriction on one-bit domains
a rcstriction
the symmetric difference of two sets
a subset of a given set
the union of two sets

sets bits in a four-byte variable

performs

component arithmetic

calculates the sum, mean, minimum, maximum, and standard

deviatio
defines

n for specified byte-domains of a set
a constant and associates it with a symbolic name

—35-

Operation and Set Information:

CARD returns the cardinality of a set

COMMANDS lists the available STDS* commands

CSIZE causes core size to be printed after every operation

DDEC returns the domain declaration for a set

GETELM retrieves an element of a set

INFO prints information about a dataset

LFMT prints a format

LIST prints specified subsets of a set

LISTU prints information about the sets in the current universe
LISTV prints the contents of a variable

MINKEY returns the minimum key length for a set

NDOM returns the number of domains in a set A
TIME prints information about the amount of time used since the

last call to TIME

Line Files:

QCALC performs calculations in pseudo-registers
QSFILE specifies a source file

QRETURN causes return from a line file to STDS*
QSKIP allows a skip operation in a line file

QSREG initializes pseudo-registers

Utility Functions:

DONE leaves STDS* and deletes all temporary sets

ECHO sets echo on cr off

HISTOF prints a histogram based on the floating point data in a
given domain

MTS returns cantral to the system

RES restores the original (master) sink

SPRINT specifies the system sink

STERR specifies an error return entry p01nt in a program which
calls set operations

TAU deletes duplicate elements

TAUOFF allows implicit internal representation of sets

TAUON establishes explicit representation for all sets manipulated
by set operations

TEST allows calls to nser-supplied subroutines or functions

-36-

APPENDIX B.

Partial Listings of Sets in Presidential Data Base

~-37-

8 VANBUREN VAN BUREN MARTIN DECEMBER 5 1782NEW YORK SFT. 6IN. DEMOCRATIC DUTCH
DUTCH REF.JULY 24 1862ASTHMA ~ ABRAHAM MARIA

O HARRISON HARRISON WILLIAM H. FEBRUARY 9 1773VIRGINIA SFT. 8IN. WHIG HAMP . -SYD.ENGLISH
EPISCOPAL APRIL 4 1841PHEUMONIA BENJAMIN ELIZABETH

14 TYLER TYLER JOHN MARCH 29 1790VIRGINIA 6FT. PIN. WHIG WM.-MARY ENGLISH
EPISCOPAL JANUARY 18 186 2FEVER JOHN MARY

Set ST.PRES

1 FARMER

1 SOLDIER

1 SURVEYOR

2 LAWYER

2 TEACHER

3 LAWYER

3 WRITER

4 LAWYER

S LAWYER

S SOLDIER

6 LAWYER .
6 SECRETARY

7 LAWYER

7 SADDLER

7 SOLDIER

Set ST.OCCUP

2 ABIGAIL OCTOBER 25 1764 5

3 MARTHA .JANUARY 1 1772 6

4 DOLLEY SEPTEMBER 15 1794 [/

S ELIZABETH FEBRUARY 16 1786 3

6 LOUISA JULY 26 1797 4

7 RACHEL AUGUST 15 1791 [

8 HANNAH FEBRUARY 21 1897 4

9 ANNA NOVEMBER 25 1795 19

Set ST.SPOUSE

E1806
E1812
E1816
E1829
E1824
E1828
E1832
E1836
E1849

(=B BN I N7, T, R -

Set ST.EYEAR

-38-

CAL CALIFORNIA 185@SACRAMENTO 158693 3 19221988 1 49
COLORADO COLORADO 187 6DENVER 194247 8 2048099 3P 6
CONN CONN. 1788HARTFORD 5pp9 48 2959009 24 8
DELAWARE DELAWARE 1787DOVER 2057 49 S34ppp 46 3
FLORIDA FLORIDA 1845TALLAHASSE 58560 22 6160009 9 14
GEORGIA GEORGIA 17 66ATLANTA 58876 21 4568p090 15 12
HAWAII HAWAI I 1959HONOLULU 6424 47 778008 49 4
IDAHO IDAHO 1890BOISE 83557 13 795000 41 4

Set ST.STATE

KANSAS KANSAS KANSASCITY 121991

KANSAS KANSAS TOPEKA 119484

KANSAS KANSAS WICHITA 254698

KENTUCKY KENTUCKY LOUISVILLE 390639

LA LOUISIANA BATONROUGE 154198

LA LOUISIANA 'NEWORLEANS 627525

LA LOUISIANA SHREVEPORT 160535

MARYLAND MARYLAND BALTIMORE 939024

Set ST.CITY

C16 FEDERALIST 7

C17 DEM-REP 44

C17 FEDERALIST 4

C18 DEM-REP 44

C18 FEDERALIST 4

C19 ADMIN. 26

C19 JACKSONIAN 29

Set ST.SENATE

C16 DEM-REP 156

C16 FEDERALIST 27

C17 DEM-REP 158

C17 FEDERALIST 25

C18 DEM-REP 187

C18 FEDERALIST 26

C19 ADMIN. 165

C19 JACKSONIAN 97

Set ST,HOQUSE

E1812 18 1ZMADISON DEM- REP 128CLINTON INDEP. 89
E1816 1816MONROE DEM-~REP 183KING FEDERALIST 34
E182¢ 18 2MONROE DEM~REP 231ADAMS INDEP. 1
E1824 1824J.Q. ADAMS DEM-REP 84CLAY INDEP. 37
E1824 1824J.Q. ADAMS DEM-REP 84CRAWFORD INDEP. 41
E1824 1824J.Q. ADAMS DEM-REP 84 JACKSON INDEP. 99
E1828 1828 JACKSON DEMOCRATIC 178 ADAMS NAT-REP 83

Set ST,.ELECT

-39-

A3
A4
A5
A6
A7
A8
A9
Alp
All
Al2
Al3

ONNO VTV WL

Set ST.PADM

c21
Cc22
€23
C24
C25
C26
c27
19 C27
19 C28
11 C29
11 C3p

[Tolo Je BN BEN BN BN

Set ST.CONG

Al

Alp
All
Al2
Al3
Al4
Al5
Al6
Al7

Set ST.ADMIN

APRIL
MARCH
MARCH
MARCH
MARCH
MARCH
APRIL
MARCH
MARCH

S . NI SO N N -

1789WASHINGT JOHN
1825ADAMSJIQ JOHN
1829JACKSON JOHN
1833JACKSON MARTIN
1837VANBUREN RICHARD
184 1HARRISON JOHN
1841TYLER

1845POLK GEORGE
1849TAYLOR MILLARD

ADAMS
CALHOUN
CALHOUN
VAN BUREN
JOHNSON
TYLER

DALLAS
FILLMORE

A3ff IDAHO
A3@ MONTANA

A39 N.
A30 S.
A3p WASHINGTON

D.
D.

A39 WYOMING
A31 UTAH

Set ST.NSTATE

IDAHO
MONTANA
ND

Sb

WASH
WYOMING
UTAH

~40-

APPENDIX C.

Partial Listings of Raw Input Data

—41-

o
STATES HAWAII HAWATI 1959HONOLULU 6424 47 779000
a9 4 1HONOLULU 294194STATES IDAHO IDAHO
189PBOISE 83557 13 705009 41 4 g
STATES ILLINOIS ILLINOIS 1818SPRING, 56400 25 19974999
4 26 3CHICAGO 355@4B4ROCKFORD 1321P9PEORIA
193162STATES INDIANA INDIANA 1816INDIANAP. 36291 38
5967900 12 13 6INDIANAP. 476258GARY 178329
FORTWAYNE 172594EVANSVILLE 144463SOUTH BEND 13244 SHAMMOND 111698
STATES TOWA IOWA 1846DES MOINES 56290 26 2746p09
25 9 2DES MOINES 206739CED. RAP. 19354 5STATES -
KANSAS KANSAS 1861TOPEKA 82264 14 23p3p@p 29
7 3WICHITA 254698KANSASCITY 121991 TOPEKA 119484
[]
[]
o
PRES HARRISON HARRISON BENJAMIN AUGUST 29 1833
OHIO OHIO SFT. 6IN. REPUBLICANMIAMI O. ENGLISH PRESBYT. 1
LAWYER MARCH 13 1991PNEUMONIA JOHN ELIZABETH 2
CAROLINE OCTOBER 20 1853 2MARY APRIL 6
1896 1 1E1868 1A39 2C51
C52 PRES MCKINLEY MCKINLEY WILLIAM JANUARY 29
184 30HIO OHIO SFT.1@IN. REPUBLICANALLEGHANY SCOT-IRISHMETHODIST
2LAWYER TEACHER SEPTEMBER 14 19P1ASSASSTN. WILLIAM
NANCY 1IDA JANUARY 25 1871 2 2
E1896 E1909 2A32 A33 : 3C55 C56
C57 PRES ROOSEVET ROOSEVELT THEODORE OCTOBER 27
1858NEW YORK NEWYORK SFT. 1¢.REPUBLICANHARVARD DUTCH DUTCIIREF.
2LAWYER PUB.OFF. JANUARY 6 191 9RHEUMATI SHTHEODORE
MARTHA 2ALICE OCTOBER 27 1880 1EDITH
DECEMBER 2 1886 5 1E19¢4 2A34
A35 4C57 Cs8 cs59 cep PRES TAFT
TAFT WILLIAM H. SEPTEMBER 15 18570HIO CHIO
6FT. @PIN. REPUBLICANYALE SCOT-IRISHUNITARIAN 1LAWYER MARCH
8 193¢DEBILITY ALPHONSO LOUISE 1HELEN JUNE
19 1886 3 1E19¢8 1A36 2
cel C62 PRES WILSON WILSON WOODROW DLECEMBER
28 1856VIRGINIA VIRGINIA 6FT. @IN.DEMOCRATICPRINCETON ENGLISH
PRESBYT. 2LAWYER TEACHER FEBRUARY 3 1924HEART DIS.
JOSEPH JESSE 2ELLEN JUNE 24 1885 3
EDITH DECEMBER 18 1915 [2E1912 E1916
2A37 A38 4C63 C64 c65 cé6
®
[]
. []
ELECTION E1848 1848TAYLOR WHIG 163 1CASS
DEMOCRATIC 127ELECTION E1852 1852PIERCE DEMOCRATIC 254
1SCOTT WHIG 42ELECTION E1856 1856BUCHANNAN
DEMOCRATIC 174 2FREMONT REPUBLICAN 114FILLMORE AMERICAN
SELECTION E1868 186PLINCOLN REPUBLICAN 18¢ 3
DOUGLAS DEMOCRATIC 12BRECKRIDGESOU. DEM. 72BELL CONSTIT.
39ELECTION E1864 1864LINCOLN REPUBLICAN 212 1
MC CLELLANDEMOCRATIC 21ELECTION E1868 18 68GRANT REPUBLICAN
214 1SEYMOUR DEMOCRATIC 8PELECTION [1872 1872
GRANT REPUBLICAN 286 1GREELEY DEMOCRATIC 66
[]
®
®

—h4a-

¢ ADMIN

A2 MARCH 4 1857BUCHANAN 1JOHN BRECKRIDGE
3MINNESOTA MINN OREGON OREGON KANSAS KANSAS ADMIN
A21 MARCH 4 1861LINCOLN 1HANNIBAL = HAMLIN
2W. VA. WVA NEVADA NEVADA ADMIN A22 MARCH
4 1865LINCOLN 1IANDREW JOHNSON PADMIN
A23 APRIL 15 1865JOHNSONA) INEBRASKA
NEBRASKA ADMIN A24 MARCH 4 1869GRANT 1
SCHUYLER COLFAX @ADMIN A25 MARCH 4 1873
GRANT . 1HENRY WILSON 1COLORADO COLORADO . ADMIN
A26 MARCH 4 1877HAYES IWILLIAM WHEELER
PADMIN A27 MARCH 4 1881GARFIELD 1
CHESTER ARTHUR ' PADMIN A28 SEPTEMBER 20 1881
ARTHUR) PADMIN A29 MARCH 4 1885
CLEVELAN 1THOMAS HENDRICKS .)
[]
* CONGRESS C7 2
FEDERALIST 14DEM-REP 18 2FEDERALIST 36DEM-REP
69CONGRESS C8 2FEDERALIST 9DEM-REP 25
2FEDERALIST 39DEM-REP - 1P2CONGRESS €9 2
FEDERALIST 7DEM- REP 27 2FEDERALIST 25DEM-REP
116CONGRESS C1¢ 2FEDERALIST 6DEM-REP 28
2FEDERALIST 24DEM-REP 118CONGRESS C11 2
FEDERALIST 6DEM-REP 28 2FEDERALIST 48DEM-REP
94CONGRESS C12 2FEDERALIST 6DEM-REP 39
2FEDERALIST 36DEM-REP 1P8CONGRESS (13 2
FEDERALIST 9DEM- REP 27 2FEDERALIST 68DEM-REP
112CONGRESS C14 2FEDERALIST 11DEM-REP 25
2FEDERALIST 65DEM- REP 117CONGRESS C15 2
FEDERALIST 1PDEM-REP 34 2FEDERALIST 42DEM-REP
141CONGRESS C16 2FEDERALIST 7DEM-REP 35
2FEDERALIST 27DEM-REP 156

—43—

APPENDIX D.

Program to Load Raw Data into STDS Data Base

44—

*** SERA:PRES.TEST <19,04,76> Ah

SUBROUTINE TEST (NUM,SET)
IMPLICIT INTEGER (A-X,Z,$)
INTEGER B(6),C(13),INC(13)/13*p/,NB(6)/6*p/
INTEGER STAT/'STAT'/,PRES/'PRES'/,ELEC/'ELEC'/,CONG/'CONG'/,ADMI/'ADMI '/
LOGICAL*1 A(S@#@p@),BA(32768) ,BB(32768) ,BC(32768) ,BD(32768) ,BE(32768,BF (32768)
LOGICAL*1 XX(4),ZZ(4)
INTEGER LC(13)/99,40,202,12,52,12,6,6,80,79,24,24,24/
EQUIVALENCE (NB (1) .NBA) , (NB(2) ,NBB), (NB(3) ,NBC) , (NB(4) ,NBD) , (NB(5) ,NBE) , (NB(6) NBF)
EQUIVALENCE (Z,2Z(1)), (X,XX(1))
NUMAX=NUM*8p
IF(NUM.GT.®) GO TO 191
PRINT 1p¢
199 FORMAT(' *** TEST(CARD,ARRAY) ~ STATE,CITY,PRES,OCC,SPOUC,EYEAR,",
#' PADM,CONG,ELEC, ADMIN,NSTATES , SENATE ,HOUSE ***1)
RETURN

191 L=p
LL=p
SW1=9
SW2=9
SW3=¢
SWA=p
X=p
CALL GBLOCK(1,SET,1,NUM,S@@pp, A(1))
B(1)=$AD(BA)
B(2)=$AD(BB)
B(3)=$AD(BC) S e e
B(4)=$AD(BD)
B(5)=$AD(BE)
B(6)=$AD(BF)
DO 1§42 I=1,13
192 CALL $OUT(C(I),INC(I),LC(1),0,8,LC(1),2,2)
PRINT 9§91
opp1 FORMAT ('~OUT')

200 L=L+LL
LL=p
IF(L.GE.NUMAX) GO TO 6ppp@
2Z(1)=A(L+1)
22(2)=A(L+2)
27(3)=A(L+3)
2Z(4)=A(L+4)
IF(Z.LQ.STAT) €O TO 1p¢@
SW1=SW1+1
1F(Z.EQ.ELEC) GO TO 2¢@¢
SW2=SW2+1
IF(Z.EQ.PRES) GO TO 3@¢¢
SW3=SW3+1
IF(Z.EQ.ADMI) GO TO 4p¢@
SW4=SW4+1 .
IF(Z.EQ.CONG) GO TO 5¢@p
PRINT 9¢¢9,Z,L,LL

9¢g9 FORMAT('Z,L,LL:',Z9,216)
GO 10 6pPP

STATES[C(1)1, CITY(C(2)]

199§ CALL IMVC(98,BA,NBA,A,L+1f)

NBA=NBA+9p

LL=11p

Z=p

2Z(4)=A(1+LL)

7=2-24p

XX(4)=A(L+LL-1)

-?

1491

1199
2099
2p02

app2
2¢p1

2019
2190

2119

2209

2219

23¢¢

Z=(X-240)*19+2

IF(Z.EQ.P) GO TO 2¢¢

DO 1199 I=1,Z

CALL IMVC(2@,BB,NBB,A,L+1§)
NBB=NBB+2§

CALL IMVC(29,BB,NBB,A,L+LL)
NBB=NBB+20

LL=LL+2¢

GO TO 299

PRES[C(3)], OCC[C(4)], SPOUCE{C(5)], EYEAR[C(6)], PADM[C(7)], CONG[C(8)]
IF(SW1.GT.1) GO TO 2¢¢1
DO 2¢92 I=1,2
CALL $EMPTY(B(I),INC(I),NB(I))
CALL $SET(C(I),INC(I),1)
NB(I)=p
CALL PUTD(C(1),'ST.STATE')
CALL PUTD(C(2),'ST.CITY")
PRINT 9982 .
FORMAT(' 10¢8')
PRES-C3
CALL IMVC(2,BA,NBA,SW1,2)
NBA=NBA+2
CALL IMVC(148,BA,NBA,A,L+1p)
NBA=NBA+140
LL=16§
=0
7Z(4)=A(L+LL)
2=2-249
IF(Z.EQ.8) GO TO 21¢@
OCCUP-4
DO 2p1¢ I=1,Z
CALL IMVC(2,BB,NBB,SW1,2)
NBB=NBB+2
CALL IMVC(1@,BB,NBB,A,L+LL)
NBB=NBB+1§
LL=LL+1p
CALL IMVC(60,BA,NBA,A,L+LL)
NBA=NBA+60
LL=LL+70
=0
22(4)=A(L+LL)
Z=2-24p .
IF(Z.EQ.8) GO TO 22¢@
SPOUCE-S
DO 211p I=1,Z
CALL IMVC(2,BC,NBC,SW1,2)
NBC=NBC+2
CALL IMVC(S@,BC,NBC,A,L+LL)
NBC=NBC+5§
LL=LL+5p
EYEAR-6
Z=p
LL=LL+19
72 (4)=A(L+LL)
Z=2-24p '
IF(Z.EQ.P) GO TO 23pp
DO 221¢ I=1,Z
CALL IMVC(2,BD,NBD,SW1,2)
NBD=NBD+2
CALL IMVC(1§,BD,NBD,A,L+LL)
NBD=NBD+1§ :
LL=LL+1¢
PADMIN-7
Z=p

—46-

231p¢

24pp

241p

3ppp

9093
391

3g19

31p9

490p

9gp4
4919

72 (4)=A(L+LL)
2=7-249
IF(Z.EQ.#) GO TO 24pp
DO 2319 1=1,2
CALL IMVC(2,BE,NBE,SW1,2)
NBE=NBE+2
CALL IMVC(4,BE,NBE,A,L+LL)
NBE=NBE+4
LL=LL+1p
CONG-8
7=p
LL=LL+1p
2Z(4)=A(L+LL)
7=7-240
IF(Z.EQ.#) GO TO 2¢p
DO 2419 I=1,Z
CALL IMVC(2,BF,NBF,SW1,2)
NBF=NBF+2
CALL IMVC(4,BF,NBF,A,L+LL)
NBF=NBF+4
LL=LL+1p
GO TO 209
ELEC[C(9)]
LF(SW2.GT.1) GO TO 3p1p
DO 3PPl I=1,6
CALL $EMPTY (B(I),INC(I+2),NB(1))
CALL $SET(C(I+2),INC(I+2),1)
PRINT 90@3
FORMAT (* 2099")
NB(I)=p

CALL IMVC(5@,BA,NBA,A,L+1f)
NBA=NBA+50

LL=79

Z=p

ZZ(4)=A(L+LL)

2=2-240

IF(Z.EQ.#) GO TO 2¢¢

CALL IMVC(39¢,BA,NBA,A,L+LL)
NBA=NBA+3§

LL=LL+30

TF(Z.EQ.1) GO TO 2¢¢

DO 319§ 1=2,Z

CALL IMVC(5@,BA,NBA,A,L+1P)
NBA=NBA+5§

CALL IMVC(3@,BA,NBA,A,L+LL)
NBA=NBA+3§

LL=LL+3§

GO TO 2¢p ‘
ADMIN([C(10)]
IF (SW3.GT.1) GO TO 4p1p

CALL $EMPTY(B(1),INC(9),NBA)

CALL $SET(C(9),INC(9),1)

NBA=§

PRINT 9¢¢4

FORMAT (' 3809')

CALL IMVC(5@,BA,NBA,A,L+1§)

LL=7§

NBA=NBA+5@

Z=g

2Z(4)=A(L+LL)

2=2-24§

1F(Z.ME.§) GO TO 4p1l

BA(NBA+1)=A(L+LL-1)

CALL IMVC(19,BA,NBA+1,BA,NBA)

—47~

4911

4912

4209

509

5091

9¢95
59190

5109
5209

53¢9

6999

6991
9pge

61pp

CALL IMVC(2@,BA,NBA,A,L+LL)

LL=LL+2¢

NBA=NBA+ 2§

LL=LL+1f

Z=p

7Z(4)=A(L+LL)

2=2-249

IF(Z.EQ.§) GO TO 209
NSTATES-11

DO 42@9 I=1,Z

CALL IMVC(4,BB,NBB,A,L+1p)

NBB=NBB+4

CALL IMVC(20,BB,NBB,A,L+LL)

NBB=NBB+2¢

LL=LL+20

GO TO 20¢

IF(SW4.GT.1) GO TO 5@1@

DO 5¢¢1 I=1,2

CALL $EMPTY (B(I),INC(I+9),NB(I))

CALL $SET(C(I+9),INC(I+9),1)

NB(I)=p

PRINT 99@5

FORMAT (' 499¢')

LL=39

7=f

ZZ(4)=A(L+LL)

7=2-240

IF(Z.EQ.9) GO TO 5209
SENATE-12

DO 5198 I=1,Z

CALL IMVC(4,BA,NBA,A,L+1p)

NBA=NBA+4

CALL IMVC(20,BA,NBA,A,L+LL)

LL=LL+20

NBA=NBA+2f

LL=LL+1p

Z=p

ZZ(4)=A(L+LL)

Z=2-24p

IF(Z.EQ.9) GO TO 2¢p
HOUSE-13

DO 5398 I=1,Z

CALL IMVC(4,BB,NBB,A,L+19)

NBB=NBB+4

CALL IMVC(20,BB,NBB,A,L+LL)

LL=LL+29

NBB=NBB+2§

60 TO 200

DO 6Pl I=1,2

CALL $EMPTY(B(I),INC(I+11),NB(I))
CALL $SET(C(I+11),INC(I+11),1)
NB(I)=¢

PRINT 9086

FORMAT (' PUTD')

CALL PUTD(C(3),'ST.PRES')
CALL PUTD(C(4},'ST.0CC")
CALL PUTD(C(5),'ST.SPOUC')
CALL PUTD(C(6),'ST.EYEAR')
CALL PUTD(C(7),'ST.PADM')
CALL PUTD(C(8),'ST.CONG')
CALL PUTD(C(9),'ST.ELEC')
CALL PUTD(C(18),'ST.ADMIN')
CALL PUTD(C(11),'ST.NSTATE')
CALL PUTD(C(12),'ST.SENATE')
CALL PUTD(C(13),'ST.HOUSE')
DO 61p¢ 1=1,13

CALL FREE(C(T))

RETURN

END

-48~

10.

11.

REFERENCES

D. L. Childs, "Feasibility of a Set-Theoretic Data Structure: A General
Structure Based on a Reconstituted Definition of Relation," Proceedings
of IFIP Congress, 1968 (North-Holland Publishing Co., Amsterdam, 1969),
pp. 420-430.

D. L. Childs, "Description of a Set Theoretic Data Structure,' AFIPS
Conference Proceedings, Vol. 33 Part 1, (AFIPS Press, Montvale, NJ, 1968),
pp. 557-564.

D. L. Childs, "Extended Set Theory: A Formalism for the Design, Implemen-
tation, and Operation.of Information Systems," Current Trends on Program-
ming Methodology, Vol. 4, R. T. Yeh, Ed. (Prentice-Hall, Inc., Englewood
Cliffs, NJ — to be published).

W. T. Hardgrave, "A Technique for Implementing a Set Processor,'" Adssoc.

‘Comput. Mach. FDT 8, 86 (1976); (also published in ACM SIGPLAN Notices,

Vol. II (1976).

W. T. Hardgrave, Set Processing: A Tool for Data Management, Department
of Information Systems Management, University of Maryland, Information
Systems Management Technical Report #6 (1976).

W. T. Hardgrave, Accessing Technical Data Bases Using STDS: A Collection
of Scenarios, Institute for Computer Applications in Science and Engineer-
ing, Hampton, VA, ICASE Report 75-8 (1975).

W. T. Hardgrave "Set Processing in a Network Environment," Institute for
Computer Applications in Science and Engineering, Hampton, VA, ICASE
Report 75-7 (1975).

E. H. Sibley, Ed., '"Caomputing Surveys," J. Assoc. Comput. Mach. 8, 1-151
(1976).

STDS Reference Manual, Set Theoretic Information Systems Corp., Ann Arbor,
ML (1975).

- STDS-0S Reference Manual Version 3.02, Set Theoretic Information Systems

Corp., Ann Arbor, MI.

D. E. Bakkom, E. W. Birss, and S. Woodison, IMS Logical Data Bases: An
Illustrative Example, University of Michigan, Ann Arbor, MI, Data Trans-
lation Technical Report 76DB2 (1976).

D. G. Severence, and G. M. Lohman, "Differential Files: Their Applica-
tion to the Maintenance of Large Data Bases," ACM Trans. Databuase Sys. 1,
256-267 (1976).

WIF/gw

—-49-

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the Universily of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $§ ; Microfiche $3.00

Domestic Domestic
Page Range Price Page Range Price
001-025 $ 3.50 326—-350 10.00
026—050 4.00 351-375 10.50
051-075 4.50 376400 10.75
076100 5.00 401425 11.00
101-125 5.50 426—450 11.75
126—150 6.00 451-475 12.00
151-175 6.75 476—500 12.50
176200 7.50 501-525 12.75
201-225 1.75 526-550 13.00
226-250 8.00 551-575 13.50
251-275 9.00 576—600 13.75
276-300 9.25 601—up -
301-325 9.75

*Add $2.50 for each additional 100 page increment from 601 to 1,000 pages;
add $4.50 for each additional 100 page increment over 1,000 pages.

