
SET THZORETIC DATA STRUCTURES r c m c) :

A TUTORIAL

Edward W. Birss and Jeffrp W. Yeh

January 31, 1977

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

FOREWORD

The Set Theoretic approach to data base management was investigated as a

potential solution to the problem of storing and manipulating large data bases.

The Set Theoretic approach had generated interest as a technique to manage

large amounts of data in a complex yet efficient manner, and a more detailed

investigation was begun. This report documents the study of an implementation:

Set Theoretic Data Structures.

The Data Management Research Project at Lawrence Livermore Laboratory

produced this report on Set Theoretic Data.Structures as part of Contract

[RA] 76-12 with the Transportation Systems Center of the U.S. Department of

Transportation (DOT/TSC). This report will be submitted to contract monitor

Alan Kaprelian (Information Division, DOT/TSC, Cambridge, Massachusetts).

NOTICE

CONTENTS

. Foreword ii

. Abstract 1

. Introduction 1

. Background 2

Introduction to Set Theoretic Data Structures (STDS) . . .
. Presidential Data Base

Some Application Programs
. Advantages of STDS

. Shortcomings of STDS

. Conclusion

. Appendix A . Complete Set of STDS-1 Commands

Appendix B . Partial ~istings' of Sets in Presidential Data

Appendix C . Partial Listings of Raw Input Data
Appendix D . Program to Load Raw Data into STDS Data Base

. References

. 9

. 14

. 25

. 30

. 3 1

. 33
Base 37

. 4 1

. 44

. 49

SET THEORETIC DATA STRUCTURES (STDS):

A TUTORIAL

ABSTRACT

Extended Set Theory as a data base management discipline has received

attention in the data base literature. Set Theoretic Information Systems

corporation has, for some time, "marketed a data base system based on the founda- .

t i o n of Extended Set Theory. This system is called Set Theoretic Data Struc-

tures (STDS). A series of examples shows that STDS is similar to relational

algebraic data base management systems. The advantages of STDS are its straight-

forward data base design, compact data representation, and flexible, powerful

data manipulation operators; while its limitations are its low-level primitive

user interface and the partial implementation of the Extended Set Theoretic

concepts. To make STDS very attractive, a "user-friendly" interface should be

developed, and some distinctive features of Extended Set Theory (such as sets

of sets) should be implemented.

INTRODUCTION

The Extended Set Theoretic approach to data base management as proposed

by D. L. Childs has received attention as an alternative approach in recent

years. In spite of its early history (i.e., 1968), little has been published

through the years, Refs. 1 through 3 being the principal publications.

W. T. Hardgrave, however, has also actively published in the area of Extended

Set Theory. 4- 7

To show the feasibility of the approach, several software implementariuns

of data base management systems using the foundation of Extended Set Theory

have been produced. Two of these are the Set Theoretic Data Structure pack-

ages (STDS-I and STDS-0s) produced by Set Theoretic Information Systems

Corporation. STDS-T and STPS-OS operate on IBM 360/370 and Arndahl computers.

The purpose of this paper is fourfold:

To present a brief overview of the Extended Set Theory sufficient ro

motivate the approach

To present an introduction to STDS-I and to note major differences in

STDS-OS

To provide some example query and update programs to demonstrate the

salient characteristics and capabilities of the system

To assess the capabilities and limitations of the systems.

To illustrate the flexibility and breadth, the examples provided in .this

report will be illustrated in STDS-I. STDS-I was chosen over STDS-OS as an

illustrative tool for two basic reasons: .(I) STDS-I is more powerful, has

more operations, and is more flexible, and (2) the transportation data bases,

which are of primary interest to this contract, were installed under STDS-I.

The examples in STDS will be similar to those presented in Ref. 8 and will use

the same Presidential data base. Thus, this report, when compared with the

articles in Ref. 8, will give the reader a direct comparison and an accurate

perspective with which to view an Extended Set he ore tic implementation: STDS.

BACKGROUND

Extended Set Theory was developed by David L. Childs with support from

the CONCOMP project at the University of Michigan. Childs realized that com-

puter data structures did not have a rigorous mathematical formulation, and,

began to develop a definition that would ultimately lead to practical results

when applied to the computer environment.

To achieve a mathematical definition of computer data structures,

particularly those used in data bases, Childs investigate'd classical set theory.

The choice of classical set theory was a natural first step, because a data

base record might be viewed as an n-tuple where each field in the record

represents a domain of the n-tuple. However, classical set theory has some

definite shortcomings when applied to records and data bases. These problems

arise because of the definition of the n-tuple.

A standard classical set theoretic definition of the ordered pair

(2-tuple) is:

This definition is extended to n-tuples in a straightforward manner:

When this definition is applied 'to computer data structures, this definition

quickly breaks down:

This example has demonstrated an anomaly w j . t h the classical set theoretic

definition of the n-tuple. This anomaly, however, is not the only problem.

-2-

C e r t a i n obvious c l a s s i c a l s e t t h e o r e t i c o p e r a t i o n s on n- tup les a r e undefined,

l a r g e l y because of t h e d e f i n i t i o n of t h e n- tuple .

To ach ieve a b e t t e r foundat ion f o r computer d a t a s t r u c t u r e s , Chi lds

developed a new d e f i n i t i o n of a s e t . The s e t E i s de f ined a s :

where a i s an atom of a set and i i s a p o s i t i o n i n d i c a t o r . Note than an
j j

n-tuple i s now j u s t a s p e c i a l cas'e of a set:

The advantages of t h e d e f i n i t i o n of t h e s e t become obvious:

1. There i s no problem d i s t i n g u i s h i n g between l i k e elements w i t h

d i f f e r e n t p o s i t i o n s .

2 . n - tup les need n o t be considered s p e c i a l l y ; n - tup les a r e s p e c i a l

c a se s of s e t s .

3 . A l l c l a s s i c a l s e t ope ra t i ons may be def ined on t h e s e sets.

4 . New ope ra t i ons on t h e s e sets may be def ined .

INTRODUCTION TO SET THEORETIC DATA STRUCTURES (STDS)

It i s t h i s d e f i n i t i o n of t h e s e t t h a t motivated t h e implementation of

t h e STDS. The STDS sof tware package was o r i g i n a l l y developed t o experiment

w i th t h e s e s e t s . However, once o p e r a t i o n a l , STDS proved t o be q u i t e e f f e c t i v e ;

v e r s i o n s nf i C are c u s r e ~ t l y being marketed by S e t h he ore tic Information

Systems Corporat ion. The c u r r e n t ve r s ion of STDS l i m i t s i t s e l f t o t h e s p e c i a l

c a se of t he s e t where a l l e lements of t h e s e t s a r e - a t o m s (t h e n- tup le c a s e) .

A s a l l uded t o p rev ious ly , a c o l l e c t i o n of n - tup les c a n ' b e viewed a s a

t a b l e :

2
can be viewed as

(r is the membership-condition that must be valid for all members of the set.
In this particular example, r could be children of Jim Smith.) . j

The STDS package itself consists primarily of operations on sets or

tables. The operations that manipulate these tables can be categorized as

follows:

1. 110 operations

2. Set operations

3. Arithmetic operations

4. Utility functions

A relatively brief description of the available Extended Set Theoretic

Operations in STDS-I is included in Appendix A. For a more complete descrip-

tion see Refs. 9 and 10. To understand the remaining portions of this report,

only these few operations need"to be explained:

Name

S am
L

Fred

Susan

Mary

110 and Utility Set Operations

Age

5

3

2

1

GET UN

PUT XPANFl

SETFMT RMIX8

LIST XSET

QSFILE RS 8

QRETURN LEGL

In order to describe the above.functions, examples will be drawn from

the Presidential data base. For the purposes of explanation, the examples

will be limited to two tables, Presidents and Elections:

P r e s i d e n t s E l ec t ions

PRES# , LASTNAME. . .

Em
PRES#, ELEC YR

GET and PUT - Ret r i eve S e t s from Archiva l S torage (i . e . , a r ch ive s e t s)

The GET ope ra t i on r e t r i e v e s an a l r e a d y s t o r e d s e t (t a b l e) from secondary

s to rage . The s e t (t a b l e) must have p rev ious ly been s t o r e d by a PUT ope ra t i on .

The PUT ope ra t i on s t o r e s a s e t on secondary s t o r a g e .

Example

STDS
I

PRESIDENTS C I
1 PUT --

GET

SETFMT and LIST - Output Opera t ions f o r Reports

The SETFMT ope ra t i on is used t o d e f i n e a p a r t i c u l a r FORTRAN-like FORMAT

s ta tement f o r . t h e purpose of p r i n t i n g t h e con ten t s of a set (t a b l e) .

The LIST command performs the a c t u a l ou tput of t h e set us ing a user -

supp l i ed format , o r one p rev ious ly def ined by use of t h e SETFMT ope ra t i on .

QSFILE and QRETURN - Get Commands from a F i l e

QSFILE i s a u t i l i t y func t ion t h a t permi ts i npu t t o be read from a f i l e

i n s t e a d of t h e . i n t e r a c t i v e te rmina l . The l a s t l i n e of t h e f i l e should con ta in

a QRETURN, t o r e d i r e c t t h e input from t h e f i l e back t o t h e i n t e r a c t i v e

te rmina l .

UN - Produce t h e Union of Two S e t s

Given two s e t s , a r e s u l t a n t set i s cons t ruc t ed t h a t c o n t a i n s each row

belonging t o e i t h e r i npu t s e t . The r e s u l t a n t set does n o t con ta in d u p l i c a t e s .

Example

I

1 Washington

2 Adams, J 17 1 Washington

2 Adams J

XPAII8 - Expand to Sets (JOIN)
I

XPAN8 compares the first domains of two inputs, and where a match occurs,

constructs a resultant set containing the concatenation of the data fields

from the two input sets:

Example

Currently, XPAN8 is not available in STDS-0s.

RMIX8 - Rearrange the Domains of a Set

RMIX8 rearranges domains within a set. An index set .is used to specify

the rearrangement (see XSET). This operation could be used to permute the

President's number with his name as shown below:

ELEC PRES-ELEC

Washington 'mi
1
Washington 1789

Washington 1792

Adams 1796

XPAN8 () =

1

1

1

2

XSET - Crea te an Index Se t

XSET i s used t o c r e a t e . a n index s e t . An index s e t s p e c i f i e s domain

i n d i c e s . (u sua l ly b y t e s) , which form t h e new format of t h e s e t u s ing RMIX8.

For example, given a set P con ta in ing t h e c h a r a c t e r s t r i n g :

1111111 ;
1234567890123456 '

NOW IS THE TIME,

and t h e d e s i r e t o c r e a t e t h e r e s u l t a n t s e t Q:

THE TIME IS NOW,

we would spec i fy an index s e t X:

where t h e domains of t h e index set X a r e :

TP - t o posit 'ion; t h e p o s i t i o n t h e f i e l d i s t o be i n t h e r e s u l t a n t set

FP - from p o s i t i o n , t h e t h e f i e l d is coming from i n t h e i npu t

s e t

Len - t h e l eng th of t h e f i e l d .

Once t h e index set X has been c r e a t e d u s ing XSET, t h e MIX8 ope ra t i on i s

performed t h a t r e f e r e n c e s P a s an i npu t set , Q a s a r e s u l t a n t set , and X a s an

iildex set .

RS8 - R e s t r i c t i o n Operat ion

RS8 i s a r e s t r i c t i o n ope ra t i on t h a t compares 8 -b i t domains i n an i npu t

s e t w i th those i n a r e s t r i c t i o n set , and produces a r e s u l t a n t set t h a t c o n t a i n s

rows of t h e i npu t set t h a t meet t h e r e s t r i c t i o n c r i t e r i a of t h e r e s t r i c t i o n

s e t .

Example-

PRES ELEC
I I i

1 Washington i Q 1
RS8 on domain 1 of PRES, us ing ELEC a s r e s t r i c t i o n s e t , y i e l d s :

2 Adams J El
LEGL - Logica l Compare of Components of a Se t

LEGL performs a l o g i c a l compare of two components I and J of a s e t ,

and produces t h r e e r e s u l t a n t s e t s ; SL whose components a r e such t h a t I < J ,

SE such t h a t I = J , SG such t h a t I > J.

Examp 1 e

LEGL (

The STDS User I n t e r f a c e

STDS-I hno a r a t h e r low-level u s e r - i n t e r f a c e f o r mandpulating

sets. Unlike t h e examples shown i n t h e prev ious s e c t i o n t h e domains a r e no t

named and have a p h y s i c a l o r i e n t a t i o n . Each set has a domain d e c l a r a t i o n

t h a t is e i t h e r 8, 16, o r 32 b i t s . The l e n g t h o f . t h e n- tup les (rows of t h e s e t)

a r e i n t e g r a l m u l t i p l e s of t he domain d e c l a r a t i o n . Because l o g i c a l q u a n t i t i e s

s t o r e d a r e f r e q u e n t l y l a r g e r than t h e phys i ca l domain d e c l a r a t i o n , l o g i c a l

. .

domains a r e re fe renced by g iv ing t h e p h y s i c a l domain index (p o s i t i o n) and a

l e n g t h (number of domains). However, STDS-OS does permit naming of domains.

Example

Se t PRES might have a domain d e c l a r a t i o n of 32, b u t then -
a l l l o g i c a l domains (f i e l d s) would have t o begin on word

boundaries on I B M 3601370 computers. Hence a reasonable

I I I a l t e r n a t i v e i s L O use an 8-b i t (I by t e) domain dec l a r a -

I I I t i o n . I f 2 b y t e s a r e a l l o c a t e d f o r p r e s i d e n t number, and

I I I t en f o r p r e s i d e n t ' s l a s t name, then t h e p r e s i d e n t number
L_L---I i s domain 1 . w i t h l e n g t h 2, and t h e p r e s i d e n t ' s l a s t name

i s domain 3 w i t h l e n g t h 10.

The phys i ca l o r i e n t a t i o n of t h e STDS-I package r e q u i r e s t h e u s e r t o know

the p o s i t i o n , format , and l eng th of t h e d a t a on t h e s t o r a g e dev ice . I n sub-

sequent examples, except where e x p l i c i t l y i n d i c a t e d , a l l f i e l d s a r e c h a r a c t e r

r e p r e s e n t a t i o n (i . e. , 8-b i t domains).

STDS i s accessed i n two p o s s i b l e f a sh ions :

1. By programming language (FORTRAN o r COBOL) us ing CALL s t a t emen t s .

2. By an i n t e r a c t i v e i n t e r f a c e . This i n t e r f a c e is extremely s imple

and e s s e n t i a l l y r e q u i r e s t h e u s e r t o name t h e ope ra t i on and t o

provide t h e parameters . The only b a s i c d i f f e r e n c e between t h i s

i n t e r f a c e and t h e programming language i n t e r f a c e i s t h a t t h e u se r

need no t code t h e fou r l e t t e r s "CALL"; o therwise t h e i n t e r f a c e s a r e

n e a r l y i d e n t i c a l .

To provide a comprehensive s e t of examples of use of STDS, more d e t a i l

about t h e p r e s i d e n t i a l d a t a w i l l b e presen ted i n t h e n e x t s e c t i o n .

PRESIDENTIAL DATA BASE

The P r e s i d e n t i a l d a t a base c o n t a i n s in format ion about' t h e P r e s i d e n t s of

t h e United S t a t e s and t h e i r a s s o c i a t e d Congresses and Adminis t ra t ions , p l u s

s e l e c t e d in format ion about t h e S t a t e s of t h e Union. Th i s d a t a . b a s e was used

i n a r e c e n t i s s u e of Computing Surveys (Ref. 8 e d i t e d by E . S i b l e y) , which

con ta in s t u t o r i a l s on t h e va r ious d a t a base management d i s c i p l i n e s i nc lud ing

the r e l a t i o n a l , CODASYL and h i e r a r c h i c d a t a base approaches. I n a d d i t i o n ,

t h i s d a t a base has a l s o been implemented under I B M ' s Information Management

System (IMS) .I1 Using this data base as our example, we will provide the reader

with a vehicle for comparing the.STDS system with other data base management

systems.

A second advantage of the Presidential data base is that the information

is well recognized and understood by a majority of people in the United States.

This data base is small enough to be manageable but still complex enough.to

have different types of records and relationships. These include items,

groups, repeating items, repeating groups, one-to-many rela~ionships, and

many-to-many relationships.

The implementation of the Presidential data base under the STDS system

was divided into three steps:

1. The study of the raw data and their interrelationships

2. The design of an STDS data base and the loading of raw data into the

STDS data base

3. The design and implementation of the application programs.

In this section, we will discuss step 1 in detail. Steps 2 and 3 will

be presented in the subsequent sections.

Presidential Data .

The raw data available in the Presidential data were divided into five

groups :

1. Personal data on the Presidents: name, birthdate, state-born-in,

height, party, college, ancestry, religion, occupation, date-of-

death, cause-of-death, father, mother, wife, date-of-marriage,

number-of-children, election-year, administration-number, Congress-

number.

2. Data for each Presidential Administration: administration-number,

inauguration date, president, vice-president, new-states-admitted

to the Union during that administration.

3. Data on States: state-name, year-admitted, capital, area, area-

ranking, population, population-ranking, number-of-electoral-votes,

cities arid ci~y-populations.

4. Data on each Congress:. congress-number, the major-parties and the

number of their senators in the Se.n.ate, the major-parties and the

number of their represent.atives i r i the IIouse.

5. Data on csch election! year, winner, winning-party, winner's total-

votes, loser, losing-party, loser's total-votes.

A detailed description of the Presidential data base can be found in

Ref. 8.

Relationships among Presidential Data Groups

The relationships among the Presidential data groups can be divided

into two categories: the relationships between a group and its elements,

and the relationships among groups.

Relationships between group and its elements - The relationships between

each group (as mentioned in the above section) and its elements can be

described in Table 1.

Table 1. Relationships between group and its elements.

. .

Degree of
Element relationship-

A. President

Name, birthdate, state-born-in, height, party,
college, ancestry, religion, date-of-death, cause-of-death, father, mother 1:1

. Occupation l : m , m > O -

Wife, date-of-marriage, number-of-children l:m, m - > 0

. Election-year l:n, n - > 1

B. Administration

Administration-number, inauguration-date,
president, vice-president . I:,-

. New-sta.t.~.-admitted l:m, m - > 0
....

C. States

State-name, year-admitted, capital, area, area-ranking,
population, population-ranking, electoral-votes 1:l

Major-party in Senate, number-of-senators ~:II, il - > 1

. Major-party in House, number-of-representatives l:n, n - > 1
--. - .- "..--

E. Election

. Year, winner, winner's party, winner's votes 1:l

. Loser, loser's party, loser's votes l:n, n - > 1

Relationships among Groups - The relationships among the five data

groups are described in Fig. 1.

STDS Implementation'of Presidential Data Base

When the constrained definition of the extended sets allowed by STDS is

given, the primary design decisions in developing the presidential data base

are involved in the design of the n-tuples. One of the primary characteristics

of n-tuples is that they have a fixed length. Consequently, one of the first

design criteria that must be applied to the Presidential data is the factoring

out of all repeating data. This step yields 13 sets:

ST. PRES = [presil, pkey, last-name, first-name, initial, month-born, day-born,

year-born, native-state-key, .state-born-in, height, party, college,

ancestry, religion, month-died, day-died, year-died, cause-of-

death, father's name, mother's-name]

ST. OCCUP = [presil, occupation]

ST. SPOUSE = [presfl, spouse-name, month-married, day-married, year-married,

number-of-children]

ST.EYEAR = [presil, election-year]

ST. PADM = [presil, administration-number]

ST.CONG = [pres#, congress-number]

ST.ADMIN = [administration-number, month-inaug, day-inaug, year-inaug, pkey,

vp-first-name, vp-last-name]

ST.NSTATE = [administration-number, new-state-admitted, state-key] '

ST.STATE = [state-key, state-name, year-admitted, capital, area, area-ranking,

population, pop-ranking, electoral-votes]

ST.CITY = [state-key, state-name, city-name, ciry-populatlul~]

ST.SENATE = [congress-number, party, number-of-senators]

ST.HOUSE = [congress-number, party, number-of-representatives]

ST. ELECT = [election-year , year, winner, winner's party, winner ' s-votes,
loser, loser's party, loser's-votes]

Partial listings of the contents of these sets are found in Appendix B.

To make this example more concise, the ST.EYEAR and ST.ELECT sets

could be modified to factor out repeating winner information:

ST.EYEAR = [presil, election-year, year, winner, winner's party, winner's

electoral-votes1

ST.ELECT = [eyear, loser, loser's party, loser's-electoral-votes]

Note t h a t t h e i n t e g e r m 2 0 and t h e . in tegers n ,k 2 1 .

Fig. 1. Relationships among five data groups.

-13-

4

Congress

2

E l e c t i o n

E l e c t i o n

(1 :o)
Pres ident - - Associated

Admin is t ra t ion

Admin is t ra t ion

v

S t a t e admi t ted dur ing t h e Administ . rat ion
A d m i n i s t r a t i o n * (1 : l) S t a t e

+ _L

Associated E l e c t i o n (1 : 1)
4

Associated Congress (1 : 1) rn

The relationships between sets are symbolically represented by data '

values.. For example, the many-to-many relationship between congress and

president is represented using the key fields of the sets ST.PRES (presil) and

ST.CONG (congress-number) dynamically at query time. To find all congresses

associated with a president, XPAN8 ST.PRES with ST.CONG; to find.al1 congresses

associ,ated with a president, XPAN8 ST.CONG with ST.PRES.

The relationships in the STDS implementation are diagrammatically

represented in Fig. 2. Notice that factoring out all repeating data into

addiLiona1 sets has dccomposed M:N relatjonships into 1:n and m:l relationships.

Thus the simple operation of factoring out repeating data results in straight-

forward data base design.

As mentioned previously, the STDS-I system does not provide a symbolic

naming facility. In fact, if the domain declaration is 8-bit, first-name in

the set ST.PRES is referred to as the field that is 10 domains long and begins

at domain 25.

The set listings in the Appendix B show that all the set data are charac-

ter strings. Obviously, the numeric fields could be compacted by using binary

representations. Another improvement would be to replace all state names with

state-identifiers, thereby compacting state names. A new set which establishes

a correspondence between state identifier and state name could also be

constructed.

Data Base Design in STDS is a fairly straightforward process of factoring

out repeating data. Once the sets have been designed, the raw data must be

converted into the set formats. For the presidential data base, the raw

data (Appendix C) was loaded into an STDS format by a FORTRAN program (Appendix

D). After the sets have been filled with data, they may be manipulated. The

next section will show how such data can be manipulated.

SOME APPLICATION PROGRAMS

After the data base has been loaded into the STDS system, a series of

application programs can be written to retrieve and to update the data base.

There application programs can be written and stored in a command file and

later activated through the command QSFILE. They can.also be typed in one

hy one at the time using the STDS' interactive interface. For the purpose of

this discussion, the latter is presented in this section; however, for human

and machine efficiency the former method is recommended.

ST. SFNAT

Fig. 2. Relationships in STDS implementation.

Some examples presented in this section are also found in Ref. 8. A

comparison of the STDS and the DBTG approach based on one of these examples

is presented in a later section, "Advantages of STDS."

Sample Retrieval Programs

Four examples are presented in this section. In each example, the pur-

pose of the program is first stated, and then a set-approach algorithm is

described in detail. Finally, an STDS-I program is presented.
Example 1 - The first example presented here is the same example used

by R. Taylor in Ref. 8. The problem is to find all states that have more

than one president as a native son, and then to prjnt out the names of those

states together with the numbers of the presidents who were born in that state
*

Our algorithm for solving this problem is to form a set of tuples

[state-born-in, president's-last name, first-name, initial] from the ST.PRES

and then to tabulate the number of presidents born in the same state. The

result from this tabulation is a set of pairs of the state-born-in and the

number of presidents. A listing of this set is the final result to this

problem. An example of an STDS-I program for implementing the above algorithm

is presented in Fig. 3.

All elements in an STDS set are sorted by the lexicographical order of

their first domain. Therefore, the final listing is in alphabetical order by

the names of the states. If the order by the president's number is desired,

one may simply switch the position of the pair [state-born-in, number-of-

presidents] to that of the pair [number-of-presidents, state-born-in], and then

print out the sct.

Example 2 - The second example is to list all the occupations together

with the presidents' names in the alphabetical order of occupations.

This problem involves acquiring access to two sets, namely the sets,

ST.PRES and ST.OCC, because the set ST-OCC contains only the president's

number (first, second ...) but not the president's name.

Our algorithm for solving this problem involved the following three

steps:

1. Extract a set of [pres!/, president's-last-name, first-name, initial]

tuples from the set ST.PRES, and call it set P.

2. XPAN8 (Join) the set ST.OCC together with the set P based on the

president's number in both sets. The.result of this operation is a

*
Those interested in a comparison between DBTG and STDS approaches may compare
the difference between the al.gorithm presented here and the one.111 R. Taylor's
paper. 8

- 1 6'-

STDS - I Commands Commentary

GET (PY1ST.PRES') P <= ST.PRES

XSET (X)

1, 83, 10 s tate-born-in

11, 13, 30 president 's last -name, first -name, initial

$ENDFILE

~ 1 1 x 8 (1, p, x, Q, 1) Q + [state-born-in, president's -name]

XTAB (10)

DMR (1, 1, Q, R) R + [state-born-in, number -of -president]

LIST (R, 1, 1000, '(2X, 10A1, 4X, 14)')

Fig. 3. STDS-I commands for Example 1.

set of [pres#, president-occupation, president's-last name, first-

name, initial] tuples. Let this set be named PC.

3. RMIX8 (Project) the set PC into a set of [president-occupation,

president's-last-name, first-name, initial] tuples. A listing of

this set is the result of this problem.

A portion of an STDS-I program for this algorithm is presented in Fig. 4.

Note that, in the result of the above program, the occupations are '

listed all the time, even if they are repeated continuously. In some cases,

one may want to list the occupations only when they first appear in the list.

This problem may be solved by using a FORTRAN program to list the resulting

setlfrom STDS in any desired format. It is not recommended that this problem,

be solved by using STDS commands; to solve this problem in STDS, one would

have to repeat the following procedure a number of times:

Get,one occupation from the set ST.OCC, and then find all the presidents

who have this occupation.

The number of repetitions, N, i.s equal to the number of different

occupations in the set ST.OCC. This p'rocedure by itself is not a simple one

(a similar example is presented in the next problem). Adding to the complex-

ity is the fact that, each time.this procedure is invoked, gaining access to

the set ST.PRES is required at least once. Thus, a total of N accesses to the

set ST.PRES would be required.

A good rule of thumb in programming with STDS is to remember that the

basic unit in STDS is a set (e.g., a file) but not an element (e.g., record).

To best utilize the power of STDS, one should retrieve information through

sets, but not through elements.

Example 3

The purpose of this example is to illuserate the retrieval of information

from an STDS.on an element basis. As noted in the previous example, it is not

recommended that information be retrieved that would require the traversal

of one element at a time in an STDS set.

The problem illustrated by this example is to find all the Congresses

served by a given president, and then t n print o u t the given president's

number followed by the Congressional term, and the number of senators and the

number of members of the House o'f Representatives in each party.

Our algorithm is, first, to find the president number of the given

president. Next. we use this president number to construct a set of all

Congresses with whom he served. Then we extract Congress numbers one by one

I

STDS- I Commands - - --- Comment. a ry

GET (PRES , ' ST. PRES ') PRES <= ST.PRES

XSET (X)

1, 1, 2 pres #

3, 13, 30 president ' s las t - name, f i r s t name, i n i t i a l

$ENDFILE

RMIX8(1 ,PRES,X,P,l) P + [pres#, pres ident ' s name]

GET (OCC,'ST.OCC') OCC <= ST.OCC

XPAN8 (2, OCC, PRES, PC, 1) PC + [pres#, occupation, pres ident ' s name]

XSET (Y)

1, 3, 40 occupation, president ' s name

$ENDFILE

RMIX8 (1, PC, Y , R, 1) R + [occupation, president ' s name]

LIST (R, 1, 1000 '(2X, 10A1, 4X, 30A1)')

F ig . 4. STDS-I commands f o r Example 2.

from this set, and use this Congress number to get the Congress term and the

number of senators and the number of the House of Representatives in each

party. More detailed procedures are presented as follows:

1. For the given president name, extract the corresponding president

number from the set ST.PRES.

2. Use the president number extracted from 1, to construct a set of

Congresses with whom he served.

3. For each Congress number in the above set perform the following

steps:

(a) 6ased on the given Congress number, extract a subset from

the set ST.SENATE that contains only the given Congress
I

number.

(b) Restrict (Project) the [party, number-of-senators] out from

the above set and print the resulting set.

(c) For the same Congress number, extract a subset from the set

ST.HOUSE Chat contains only the given Congress number.

(d) Restrict (Project) the [party, number-of-representatives] out

from the above set and print the resulting set.

An STDS-I program for the above algorithm is presented in Fig. 5.

Example 4 - The purpose of this example is to show the power of STDS

through a complex problem. The problem is to find all presidents such that

the "majority party" in the Congress is different from the president's party.

We defined a majority party in the Congress as the majority party in both the

Senate and the House of that Congress. Because the information about the

Senate and the House are stored in two separate sets (ST.SENATE and ST.HOUSE),

we have to find the majority party of each Senate and that of each House, and

then we have to determine the majority party in the Congress, if any. After

finding the majority party in the Congress, we could find the president it

served and compare the president's party with the congressional party. The

operations required to accomplish this query are presented in Figs. 6a and 6b.

Sample Update Programs

In addition to the retrieval of information from a data base, updating

a data base is another primary function of the data base management system.

The purpose of updating a data base is to keep the information in a data base

current. An example of this is the updating of the Presidential Data Base in

order to incorporate a new state just admit t . ed to the Union. Another example

of updating the Presidential Data Base is the addition of the names of senators

-20-

-

STDS-I Commands Commentary

GET (PRES, 'ST.PRES1) PRES <= ST. PRES

V$ ($AY8,NAME)

LINCOLN t y p e i n p r e s i d e n t ' s name

RSEQ (1, PRES, NAME, X) X +-{PRES (l a s t name = NAME

LIST (X, 3 , 10, (2X, 130A1)')

16 ,LINCOLNAAA L I N C O L N A A A A B q A A A A A A A A A F E B R U A R Y A A A A A A A A A A 12' ' ' '

V$ ($A, 8 , PRENUM)

16 t y p e i n p r e s i d e n t number

GET (CONG , ' ST. CONG ') CONG <= ST.CONG

RSEQ (~ , C O N G , PRENUM, X) x +- {CONG I pres# = PRENUM

LIST (X, 1, 10, ' (2 X , 20A1)')

16 C37

16 C38

16 C39

GET (SENATE, 'ST.SENATE1) SENATE .<= ST. SENATE

GET (HOUSE, 'ST.HOUSE1) HOUSE <= ST.HOUSE

V$ ($A, 32, CONNUM)

C37 type i n congress number

P -+ {SENATE (tong# = coNNuM)

C 38

C 39

Q +- {HOUSE I tong# = CONNUM

Fig. 5. STDS-I commands f o r Example 3 .

-21-

STDS- I Commands Commentary

: (a) Find a s e t of majority p a r t i e s i n each Senatc

GET (SENATE, 'ST.SENATE1) SENATE <= ST. SENATE .
XSET (X)

1. 1, 4 cong#

5, 15, 10 number-of-senators

$ENDFILE

XSET (Y)

1,' 40, 0

$ENDFILE

TABF (4 , Y)

RMIX8 (1, SENATE, X , SMAX, 0) SMAX + [tong#, highest-number-of-senator]

XSET (2)

1, 1. 4 tong#

5, 15, 10 # of senators ,

15, 5, 10 Par ty

$ENDFILE

RMIX8 (1, SENATE, 2, XSENAT,P)) XSENAT + [tong#, # of senators , par ty]

RS8 (1, XSENAT, SMAX, SMAJ) SMPJ + [tong#, highest-number-of-senatbirs ,
party1

: (b) Find a s e t of majority p a r t i e s i n each House

GET (HOUSE, 'ST.HOUSE1) HOUSE <= ST.HOUSE

TAEF (4, Y)

RMIX8 (1, HOUSE, X , HMAX, a) HMAX + [tong#; highest-number-of-represen-
t a t i v e s]

RMIX8 (1, IIOUSC, Z, XIiOUSE, P)) WnllSE t [r.nng#, t of represen ta t ives ,
party1

RSB (1, XHOUSE, HMAX, HMAJ) HMAJ + [congff, highest # of rep . , par ty]

: (c) Find a s e t .of majority p a r t i e s i n both t h e Senate and t h e House

XPAN8(4, :.SMAJ, HMAJ, CMAJ,2) CMPJ +,[tong#, # of maj. p a r t y ' s senators ,
, maj. par ty , # of maj. p a r t y ' s
rep . , maj party]

LEGL (CMAJ, 15, 10, 35, 10, SL, SE, SG) compare majori ty par ty i n t h e Senate
and t h e House

XSET (X)

1 , 1; A , tong#

5. 15. 10 ,Party
d

Fig. 6a. First half of STDS-I commands f o r Example 4 .

$ENDFILE

RMIXI (1, SE, X , MAJ, 1) + [congff , maj . -party i n both
t h e Senate and t h e House]

: (d) Construct a s e t of majority p a r t i e s i n t h e Congress and t h e pres ident
they served

I
GET (CONG, 'ST.CONG1) CONG <= ST.CONG

XSET

1 , 3, 4 congff

5, 1 , 2 pres1

$ENDFILE

RMIX8 (1, CONG, XCONG, 1) XCONG + [congff, presf f]

XPANI (4, XCONG, MAJ, MPJCON, 10) WCON + [tong#, pres# , maj . p a r t y]

S E T (X)

1, 5, 2 pres#

3 , 1 , 4 congff

7. 7 , 10 , maj ...p a r t y

$ENDFILE

RMIX8 (1, MAJCON, MAJOR, 1) MAJOR + .[preslf, tong#, maj-party]

: (e) Find a s e t of p re s iden t ' s names and t h e i r p a r t i e s

E T (PRES, 'ST.PRES1) PRES <= ST.PRES

XSET (X)

1, 1 , 2 presff

3, 13, 30 p re s iden t ' s lastyname, f irst-name, i n i t .

33, 103, 10 p re s iden t ' s pa r ty

$SENDFILE

RMIX8 (1, PRES, X, PPARTY, 1) PPARTY + presff , pres-name, pres- partyj '

: (f) Find a s e t of major i ty p a r t i e s i n t h e Congress which is n o t t h e p re s iden t ' s
pa r ty

XPAN8 (2 , PPARTY, MAJOR, PCPART, 1) PCPART + ipres# , pres- name, pres-par ty ,
congff, maj-party]

I,E(;I. (PCPMT, 33, 10, 47, 10, SL, SE, SG) compare pres-par ty 'and maj-party

RESULT i s a subset o f PCPART where UN (SL, SG, RESULT)
pres pa r ty d i f f e r e n t with major
p a r t y

LIST (RESULT, 1, 999, ' (56Al) ') '

Fig. 6b. Second half of STDS-I commands for Example 4.

I

and congressmen, as well as the names of the newly elected president and his

administration.

Updating an STDS data base involves the change of the contents of some

sets in the data base. In order to change a set in STDS one has to create a

differential set12 for the set to be changed. A differential set is a set of

all updated elements of a given set. For example, a differential set of a set

of states, ST..STATE, may be a set of all newly admitted states. To add these

new states into the set ST.STATE is to "union" the set ST-STATE and its differ-

ential set. Similarly, to delete some elements from a set is to subtract its

differential set from the original set. As for the content-modification or

replacement of some elements in a set, one can simply create a differential j
set consisting of both the elements to be replaced and.the.!elements to replace

them; at that point, the symmetric difference between the original set and

its differential set equals the updated set. For example, the original set

A = {a,b,c) and the updated set is expected to be B = {a,d,c). One can create

a differential set D = {b,d); then the summetric difference between the sets

A and D is equal to the updated set; i.e., AAD = {a,d,c) = B.

Differential sets may be used as the temporary sets for updating the

data bases. They can also be used as a permanent "errata list" for the data

base in the following sense. Rather than update a data base each time a

change is desired, a small collection of modified records is maintained on

the differential sets. If the changes to the data base continue, the differen-

tial sets grow to a sufficient length that the updating costs become justifiable,

at which time a physical update to the data base may be performed. This

method significantly reduces the update costs and has been widely used in

many data base applications .12 STDS is one of the best structures for imple-

menting the concept of the differential sets.

In this section we will illustrate two examples of updating the STDS-I

Presidential data base, one using physical updating and the other using

differential sets.

Example 5. - To Admit a New State - Referring to the discussion of

the Presidential data base, we recall that to enter a new state into the data

base we have only to know the administration number under which the state is

admitbed. No other set except ST.NSTATE, ST-STATE, and ST.CITY in the data

base need be affected by the addition of a new state. For the sake of sim-

plicity, we assome that t h e area ranking and the population ranking have not

been changed by the addition of thc new state.

Our algorithm to admit this new state is to create three state sets

that contain the information of the new state with respect to the three sets,

ST.NSTATE, ST.STATE, and ST.CITY. Then, we replace these three old sets,

respectively, by the union of the old set and its corresponding new state set.

An STDS-I program for this example is presented in Fig. 7.

Example 6. - To Update Presidential Data Base after Each General

Election -After each general election, a new president, a new administration,

a new congress, and new election results will be added into the data base.

As may be recalled from the section "Pres.identia1 Data Base," ten out of the

total of thirteen sets have to be updated. The majority of these updates ,

require simply inserting one or two new elements into an existing set, but

this insertion involves the creation of a new set (physical file), copying

the entire old set plus the new elements into the new set, and then destroying

the old set. The cost of these steps may be very expensive, and thus the

concept of differential sets may be beneficial to the overall system operation.

To implement the concept of differential sets, one has to create a small

data base conta.ining all new records from the election.

Note that this differential data base is considerably smaller than the

original data base and.therefore the creation cost and the future updating

costs are greatly reduced. Some other advantages for having such a small

differential data base are presented in Ref. 12. An example of the STDS-I

program for creating this differential data base is presented in Figs. 8a and

8b.

ADVANTAGES OF STDS

In this and the following section the advantages and the potential

problems of the STDS system are presented based on the experiences and opinions

of the authors.

In the design of an STDS data base, one is immediately impressed by the

simplicity of its design task. The STDS uses the key-values to indicate the

relationships among sets, and the actual linkages of these relationships are

formulated at query-time. This' approach eliminates the problem of deciding

the physical linkages at the design phase, and leaves only one task to the

designers, namely the partitionl.ng of a.data base into a collection of minimal

relevant C C ~ E . , .
. .

STDS-I Commands Commentary

: (a) Update ST.NSTATE

DATA (NUNSTA, 8, 24, ' (24A1) Read in NU.NSTATE

GET (NSTATE, 'ST.NSTATE1) NSTATE <= ST-NSTATE

UN (NSTATE , NUNSTA, NSTATE) NSTATE + NSTATE U NUNSTA :

PUT (NSTATE, 'ST.NSTATE1) NSTATE => ST.NSTATE

: (b) Update ST. STATE

DATA (NUSTATE, 8, 90m (90A1) ' , 'NU.STATE1) Read in NU.STATE

GET (STATE, 'ST.STATE1) STATE G ST.STATE

UN (STATE, NUSTATE, STATE) STATE c STATE U NUSTATE

PUT (STATE, ' ST. STATE ') STATE => ST.STATE

: (c) Update ST.CITY

DATA (NUCITY, 8, 40, '(40A1), 'NU.CITY1) Read in NU.CITY

GET (CITY, 'ST. CITY ') CITY <= ST. CITY

UN (CITY, NUCITY, CITY) - ' CITY c CITY UNISCITY

: PUT (CITY, 'ST.CITY1) CITY 3 ST-CITY

6 --

: Fig. 7. STDS-I comknds for Example 5 .

STDS-I Commands (Comments a r e prefaced by :) --

: (a) Create a d i f f e r e n t i a l s e t D.PRES f o r t h e s e t ST.PRES

DATA (NUPRES, 16, 101, ' (101a2)", 'NU.PRES ')

PUT (NUPRES , ' D . PRES ')

: Future re fe rence t o ST.PRES has t o be changed t o (PRES A DPRES)

: (b) Crea te a d i f f e r e n t i a l set D.OCC f o r t h e s e t ST.OCC

DATA (NUOCC, 32, 3, ' (3A4) ' , ' N U . OCCUP')

PUT (NUOCC, 'D.OCCUPf)

: Future re fe rence t o ST.OCCUP has t o be changed t o (OCCUP A DOCCUP)

: (c) Crea te a d i f f e r e n t i a l s e t D.SPOUSE f o r t h e s e t ST.SPOUSE

DATA (NUSPOU, 32, 13, ' (13A41 ' , 'NU.SPOUSE1)

PUT (NUSPOU, D. SPOUSE')

. .
. .

I
: Future re fe rence t o ST.SPOUSE has t o be changed) t o (SPOUSE A DSPOUSE)

. . I
. . . ~

: (d) Create a d i f f e r e n t i a t s e t D.EYEAR f o r t h e s e t ST.EYEAR

DATA (NUEYEA, 32, 2 , ' (2A4) ' , 'NU.EYEAR1)

PUT (NUEYEY, ' D. EYEAR')

: Future r e f e r e n c e ~ O ' S T . E Y E A R has t o be changed t q (EYEAY A DEYEAR)

. .

: (e) Create a d i f f e r k n t i a l s e t D.PADM f o r t h e s e t ST.PADM
. ..

DATA (NUPADM, 16, 3 , ' (3AZ) ' ; ' NU. PADM')

, .
_ . :

PUT (NUPADM, ' D. PADM')
. *

: Future re fe rence ta7ST.PADM has t o , bc changed t o (PADM A DPADM) I
Fig. 8a. First . . . h a l f o f STDS-,I. c k a n d ~ for Example 6.

. . .

1

: (f) C r e a t e a d i f ferent ia l se t D.CONG f o r t he set ST.CONG

DATA (NUCONG, 16, 3, ' (3 A 2) ' , 'NU.CONG9)

PUT (NUCONG , ' D. CONG')

: F u t u r e reference t o ST.CONG has t o be changed t o (CONG A DCONG) .

: (g) C r e a t e a d i f f e r e n t i a l se t D.ELEC t o t h e se t S T . E L E C

DATA (NUELEC, 8, 7 5 , ' (7 5 A 1) ' , ' N U . E L E C f)

PUT (NUELEC, ' D . E L E C V)

: F u t u r e reference t o S T . E L E C has t o be c h a n g e d t o (ELEC A DELEC)

: (h) C r e a t e a d i f fe ren t i a l se t D.ADMIN f o r t he se t ST.ADMIN

DATA (NUADMI, 8, 63, ' (6 3 A 1) ' , 'NU. ADMIN')

PUT (NUADMI, ' D. ADMIN ')

: F u t u r e reference t o ST.ADMIN has t o be changed t o (ADMIN A DADMIN)

: (i) C r e a t e a d i f fe ren t i a l set D.SENATE fo r t h e set ST.SENATE

DATA (NUSENA, 3 2 , 6 , ' (6 A 4) ' , 'NU. SENATE')

PUT (NUSEN A , ' i l . SENATE ' 1

: Future reference t o ST.SENATE has t o be changed t o (SENATE A DSENATE)

: (j) C r e a t e a d i f fe ren t i a l set D.HOUSE f o r t he se t ST.HOUSE

DATA (NUHOUS , 3 2 , 6 , ' (6A4) ' , 'NU. HOUSE ')

PUT (NUHOUS , ' D . HOUSE ')

: Future reference t o ST.HOUSE has t o be chanqed t o (HOUSE A DHOUSE)

F ig . 8b. Second ha l f of STDS-I commands f o r I3xampl.e 6 ,

-28-

The use of key values to indicate the relationships among sets also

provides a higher degree of data independence, which allows the user to update

(i.e., to add, to delete, or to replace) relations independently of one . .

another without tedious modifications of pointers which link one set to

another set. Key values also allow the user to restructure a data base into

any number of sets in order to reduce the physical storage requirements or

the processing time of a data base. The set theoretical approach offers

further potential storage reduction through the representation of a set in

terms of its implicit membership condition (e.g., a function or a statement

that defines the membership of a set). However, this ability for storing an

abstract set has not been implemented in either version of the current STDS

systems.

The representation of a data base as a collection of sets in STDS-I

encourages the manipulation of data on a large aggregate of data. It is

sensiblc to perform the same operations on each element in a set at a time

because each set contains all relevant data. To illustrate this point further,
8

letus compare the STDS-I and the DBTG implementations of the same problem

as presented in Example 1. The DBTG implementation requires a loop of nine

statements, and the STDS-I implementation requires only two statements without

a loop. The basic difference is that the DBTG approach operates on one record

at a time, while the STDS approach operates on a set of relevant records at

one time. It is also worth noting that in the STDS approach, the user does

not have to be bothered with traversing pointer chains (e.g., DBTG sets) or

any other physical linkages.

The extended set operation.^ provided by the STDS-I are a powerful set

of data manipulation operations equivalent to the power of the relational

algebra. This set of operations could be used as a basis for a high level

nonprocedural language for retrieving information from a collection of sets.

It could also be used as a basis for implementing a high-level re,lational

calculus language.

Thc STDS-I provides two ways to access these operations: one through

an interactive interface, and the other through FORTRAN or COBOL call state-

ments. The ah i . l i , ty t n access these operations through FORTRAN (or COBOL)

call statements is required for some classes of queries that cannot be directly

answered by using STDS commands (as shown in Example 2). In addition, FORTRAN

(or COBOL) provides a simple extension to new data manipulation functions and

a linkage to any application program, such as a graphic or statistical

program.

SHORTCOMINGS OF STDS

Although the STDS system has many advantages, it also has some disadvan-

tages. The principal disadvantage 04f STDS-I is its low-level user interface.

This interface, as previously indicated, does not allow the user to symbolically

name domains. Instead, the user references a logical domain by a physical

domain index (e.g., byte offset) and a length (number of bytes). Not only is

this cumbersome, but it forces the user to be cognizant of the data represen-

tation. A related problem, domain declaration, requires the user to stipulate

the number of domains in terms of physical quantities, in this case, bytes,

halfwords, and fullwords.

STDS-OS does permit the user to reference logical domains symbolically.

In STDS-OS, a uniform domain declaration is presented to the user; therefore,

physical quantities used to store the address data are transparent to the user.

Although STDS-OS permits naming of components of sets (columns), its principal

disadvantage is its orientation toward operations within sets but not among

sets. Of primary concern, the XPAN8 operation (JOIN) is not present. The

lack of the XPAN operatfon makes it impossible to perform queries that encom-

pass elements from more than one set.

Certain operations require that a particular domain be the (physically)

first domain before the operation is performed. This requirement obliges the

user to perform a cumbersome series of operations:

1. XS.ET command to express the rearrangement

2. RMIX8 command to do the rearranging

3. XPAN8 operation

4. Another XSET

5. Another MIX8 to transform the set back to its original orientation.

The shortcomings of the user interface are also demonstrated by the

primitive report writer facilities. The facilities in STDS-OS (e.g., RPG)

scarcely compare with commercial report writers; STDS-I is void of any such

features.

Similar to the xe.l,ational systeus, the user is burdened with some of the

same problems that far.e t h e relational DBMS community. Two chief problems.are

normalization and procedural queries. Normalization is the process of

constructing n-tuples in such a manner that no repeating data, functional

dependencies or transitive dependencies exist within an n-tuple. In STDS,

this process is left up to the user. Procedural queries, such as those that

print out the following report, are difficult to perform (see Examples 2 and

3) :

Adams J

Butcher

Baker

Candlestick maker

Adams JQ

Fireman

The difficulty stems from the fact that in STDS and in relational systems,

one works with sets, not just with records.

There are some miscellaneous disadvantages of STDS-I, such as not hand-

ling variable length data, not providing recovery or rollback facilities, and

no security facilities (STDS-OS does permit passwords on sets, however).

Finally, STDS does not present to the user all the power of Extended

Set Theory that would distinguish it from a relational system. The principal

difficulty is the inability to have sets of sets. This inability hinders one's

ability to compact data, to have automatic differential sets, and to have

abstract sets - sets where a function is stored to generate data values rather
than t h e data instances itself. In its present form, STDS does not provide

a user with more capabilities than a relational system.

CONCLUSION

STDS provides a user with a very flexible and extremely powerful tool

with which complex manipulation of data can be performed rapidly. In spite

of its flexibility, STDS-I does not provide the user with a sufficiently

"user-friendly" interface to allow nnnrnmpl l te r scientists to easily work with

a data base. STDS-OS is a step in the right direction, but it currently has

insufficient power to handle relationships between sets.

The potential capabilities of the Extended Set Theory seem to be very

powerful and attractive; however, the current implementations do not provide

the user with all the capabilities of Extended Set Theory. Almost all the

features (such as sets of sets and abstract sets) that would distinguish STDS

from relational systems are not provided.

Because of its low-level nature, STDS does not have a sufficiently

"user-friendly" interface for unsophisticated users. It is, however, a system

that appears to be of interest to designers of relational data base management

systems, and could possibly provide a more efficient means of implementing a

relational system.

Despite some drawbacks in STDS, the Extended Set Theory has good poten-

tial, and; therefore, we recommend that:

1. A "user-friendly" interf ace be developed

2. Distinctive features of the Extended Set Theory be implemented.

Should these two additional features be incorporated into STDS, it

would be a very attractive system.

S T D S . I Operations

A T O S
C O R E
DASD
DATA
E N T E R
F R E E
GARRAY
GB LOC K
G E T
PARRAY
P U T
S G E T
S I N K
S P U T
S T O D S
UNIV
VOL
L I M I T
TARR'AY
T G E T
T P U T

transforms an a r ray t o a s e t
t r an s f e r s a s e t from peripheral s torage i n t o core
spec i f i es whether s e t s a r e forced t o core or d isk

'

allows formatted entry of data
const ructs . a. s e t
re leases a s e t from the universe
constructs a s e t from an array
t r an s f e r s a block of elements from a s e t i n to an a r ray
enters a s e t from per ipheral s torage
writes a s e t t o a f i l e
s t o r e s a s e t
unscrambles and en te r s a s e t from peripheral s torage
c rea tes a permanently nu l l s e t , o r s ink
scrambles and s t o r e s a s e t
t r ans fe r s a s e t t o a da t a se t
opens a universe
spec i f i es t he MTS volume on which a da tase t i s t o be created
i n i t i a l i z e s a tape
r e t r i eve s a s e t which has been s tored on t ape i n a r ray form
r e t r i eve s a s e t which has been s tored on tape i n s e t form
s to res a s e t on t ape i n s e t form

Updating and Expanding :

nn
DMR
I N D X
I N D E X
I NUN
I SBMAX
KDMR
M I X 8
MULTU
MU L T U 1
R E FMT
RMI X8
S E T F M T
UPDT
U P D T 1
XPAN8

redef ines the domain declara t ion of a s e t
performs a domain r e s t r i c t i o n
c rea tes an index s e t (S T D S *)
c rea tes an index s e t (FORTRAN)
convsrLs port ions of a set's compnnents t o in tegers
redef ines impl ic i t s e t and buffer maxima
creates a keyed domain
rearranges t he domains of an n-tuple using an index s e t
performs a mult iple update
performs mul t ip le modification of bit-domains
reformats a s e t
rearranges speci f ied domains of an n- tuple
assoc ia tes an index with a format
updates speci f ied values i n a se t
updates a one-bit domain i n a s e t
expands t he components of one s e t with domains from another
s e t ' s components
removes specif ied zones from a s e t and packs t h e r e s u l t s

R e s t r i c t i o n s and S e t Operat ions:

BRSA
BRSL
BRS8

DIN
DRL
DSD
DUN
IN
LEGA
LEGL
NRS 1
NRS8
R L
RSEQ
RSGEA

RSGEL

RSGTA

RSGTL
RS LEA

RSLEL

RSLTA
RS LTL
RS NE
RS 1
RS8
,S D
SUBSET
1 IN

performs an a r i t h m e t i c between r e s t r i c t i o n
performs a l o g i c a l between r e s t r i c t i o n
performs a l o g i c a l between r e s t r i c t i o n f o r c i n g e i g h t - b i t
domains
r e t u r n s a domain i n t e r s e c t i o n of two s e t s
r e t u r n s a domain r e l a t i v e complement of two s e t s
r e t u r n s a domain symmetric d i f f e r e n c e of two s e t s
r e t u r n s a domain union o f two s e t s
r e t u r n s t h e i n t e r s e c t i o n o f two s e t s
performs a a r i t h m e t i c comparison of two components
performs a l o g i c a l comparison of two components
performs a no t r e s t r i c t i o n on one-b i t domains
p e r f o r m a not r e s t r i c t i o n
r e t u r n s t h e r e l a t i v e complement o f two s e t s
performs an equal - to r e s t r i c t i o n by a cons tan t
performs an a r i t hme t i c grea te r - than-or -equal - to r e s t r i c t i o n
by a cons tan t
performs a l o g i c a l g rea t e r - than -o r - equa l - to r e s t r i c t i o n by a
cons tan t
performs an a r i t h m e t i c g r e a t e r - t h a n r e s t r i c t i o n by a
cons tan t
performs a l o g i c a l g rea t e r - than r e s t r i c t i o n by a cons tan t
performs an a r i t h m e t i c less - than-or -equal - to r e s t r i c t i o n by
a cons tan t
performs a l o g i c a l less - than-or -equal - to r e s t r i c t i o n by a
cons tan t
performs an a r i t h m e t i c l e s s - than r e s t r i c t i o n by a cons t an t
performs a l o g i c a l l e s s - than r e s t r i c t i o n by a cons t an t
performs a not -equal - to r e s t r i c t i o n by a cons tan t
performs a r e s t r i c t i o n on one-b i t domains
performs a r c s t r i c t i o n
r e t u r n s t h e symmetric d i f f e r e n c e of two s e t s
r e t u r n s a subse t o f a given s e t
r e t u r n s t h e union of two s e t s

Ari thmetic Operatiorls :

BITS s e t s b i t s i n a four -byte v a r i a b l e
CARTH performs component a r i t h m e t i c
SUM c a l c u l a t e s t h e sum, mean, minimum, maximum, and s tandard

dev ia t ion f o r s p e c i f i e d byte-domains of a s e t
"$ de f ines a cons tan t and a s s o c i a t e s it wi th a symbolic name

Operation and S e t Information:

CARD
COMMANDS
CSIZE
DDEC
GETELM
INFO
LFMT
LIST
LISTU
LISTV
MINKEY
NDOM
TI ME

r e t u r n s t h e c a r d i n a l i t y o f a s e t
l i s t s t h e a v a i l a b l e STDS* commands
causes c o r e s i z e t o be p r i n t e d a f t e r every ope ra t ion
r e t u r n s t h e domain d e c l a r a t i o n f o r a s e t
r e t r i e v e s an element o f a s e t
p r i n t s information about a d a t a s e t
p r i n t s a format
p r i n t s s p e c i f i e d subse t s of a s e t
p r i n t s information about t h e s e t s i n t h e c u r r e n t un ive r se
p r i n t s t h e con ten t s o f a v a r i a b l e
r e t u r n s t h e minimum key length f o r a s e t
r e t u r n s t h e number o f domains i n a s e t
p r i n t s information about t h e amount o f t ime used s i n c e t h e
l a s t c a l l t o TIME

Line F i l e s :

QCALC performs c a l c u l a t i o n s . i n pseudo-reg is te rs
QSFI LE s p e c i f i e s a source f i l e
QRETURN causes r e t u r n from a l i n e f i l e t o STDS*
QSKIP allows a s k i p ope ra t ion i n a l i n e f i l e
QSREG i n i t i a l i z e s p seudo- reg i s t e r s

U t i l i t y Functions:

DONE
ECHO
HISTOF

blTS
RES
SPRINT
STERR

TAU
TAUOF F
TAUON

TEST

leaves STDS* and d e l e t e s a l l temporary s e t s
s e t s echo on c r of f
p r i n t s a histogram based on t h e f l o a t i n g p o i n t d a t a i n a
given domain
r e t u r n s contrnl t.n t he system
r e s t o r e s t h e o r i g i n a l (master) s i n k
spec i f ies t.he system s i n k
s p e c i f i e s an e r r o r r e t u r n e n t r y po in t i n a program which
c a l l s s e t ope ra t ions
d e l e t e s d u p l i c a t e elelilents
a l lows i m p l i c i t i n t e r n a l r e p r e s e n t a t i o n of s e t s
e s t a b l i s h e s e x p l i c i t r e p r e s e n t a t i o n f o r a l l s e t s manipulated
by s e t ope ra t ions
al lows c a l l s t o 11qer-supplied subrout ines o r func t ions

8 VANBUREN VAN BUREN MARTIN DECEMBER 5 1 7 8 2 N E W YORK 5 F T . 6 I N . DEMOCRATIC DUTCH
D W C H REF. J U L Y 2 4 1862ASTHMA ABRAHAM MARIA

9 HARRISON HARRISON W I L L I A M H. FEBRUARY 9 1 7 7 3 V I R G I N I A 5 F T . B I N . W I G HAblP . -SY0 .ENGLISH
E P I S C O P A L A P R I L 4 1 8 4 1 P H E I P I O N I A BENJAMIN E L I Z A B E T H
10 TYLER TYLER J O H N MARCH 29 1 7 9 O V I R G I N I A 6 F T . 0 I N . W I G WM.-MARY E N G L I S H
E P I S C O P A L JANUARY 18 1 8 6 2 F E V E R J O H N MARY

Set S T . P R E S

1 FARMER
1 S O L D I E R
1 SURVEYOR
2 LAWYER
2 TEACHER
3 LAWYER
3 WRITER
4 LAWYER
5 LAWYER
5 S O L D I E R
6 L A W E R
6 SECRETARY
7 LAWYER
7 SADDLER
7 S O L D I E R

S e t ST..OCCUP

2 A B I G A I L OCTOBER
3 MARTHA .IANlIARY
4 DOLLEY SEPTEMBER
5 ELIZABETH FEBRUARY
6 L O U I S A J U L Y
7 RACHEL AUGUST
8 HANNAH FEBRUARY
9 ANNA NOVEMBER

Set S T . S P O U S E

4 E l 8 0 6
4 E l 8 1 2
5 E l 8 1 6
5 E l 8 2 0
6 E l 8 2 4
7 E l 8 2 8
7 E l 8 3 2
8 E l 8 3 6
9 E l 8 4 0

S e t ST .EYEAR

CAL
COLORADO
CONN
DELAWARE
FLORIDA
GEORGIA
HAWAII
IDAHO

C A L I F O R N I A
COLORADO
CONN .
DELAWARE
FLORIDA
GEORGIA
HAWAI I
IDAHO

Se t S T . STATE

KANSAS
KANSAS
KANSAS
KENTUCKY
LA
LA
LA
MARY LAND

Se t S T . C I T Y

KANSAS
KANSAS
KANSAS
KENTUCKY
I .OlJIS IANA
L O U I S I A N A
L O U I S I A N A
MARY LAND

KANSASCITY
TOPEKA
W I C H I T A
L O U I S V I L L E
BATONROUGE
NEWORLEANS
SHREVEPORT
BALTIMORE

C 1 6 F E D E R A L I S T
C 1 7 DEM-REP
C 1 7 F E D E R A L I S T
C 1 8 DEM-REP
C 1 8 F E D E R A L I S T
C 1 9 ADMIN.
C 1 9 JACKSONIAN

Set S T . SENATE

~ 1 6 DEM-REP 156
C 1 6 F E D E R A L I S T 2 7
C 1 7 DEM-REP 158
C 1 7 F E D E R A L I S T 25
C 1 8 DEM-REP 187
C 1 8 F E D E R A L I S T 2 6
C 1 9 ADMIN. 105
C 1 9 JACKSONIAN 97

Se t ST .HQUSE

E l 8 1 2 1 8 1 2 M A D I S O N
E l 8 1 6 1816MONROE
E l 8 2 0 18 20MONROE
E l 8 2 4 1 8 2 4 5 . 4 . ADAMS
E l 8 2 4 18245.4. ADAMS
E l 8 2 4 18245.4. A D A M
E l 8 2 8 18 28JACKSON

DEM- R E P 1 2 8 C L I N T O N
DFM-REP 1 8 3 K I N G
DEM- R E P 231ADAMS
DEM-REP 8 4 C LAY
DEM- R E P 84CRAWFORD
DEM- R E P 84 JACKSON
DEMOCRATIC 178ADAMS

- --- p~~

I N D E P . 8 9
F E D E R A L I S T 3 4
I N D E P . 1
I N D E P . 3 7
I N D E P . 4 1
I N D E P . 99
NAT-REP 83

Set S T . E L E C T

2 A 3
3 A 4
3 A 5
4 A 6
4 A 7
5 A 8
5 A 9
6 A l $
7 A l l
7 A 1 2
8 A 1 3

Set ST.PADM

Set ST.CONG

A P R I L
MARCH
MARCH
Y i R C H
MARCH
MARCM
A P R I L
MARCH
MARCH

Se t ST. ADMIN

1 7 8 9 W A S H I N G T
1 8 2 5 A D A M S J Q
1 8 2 9 J A C K S O N
1 8 3 3 J A C K S O N
18 37VAN BUREN
184 1HARRISON
184 1TYLER
1 8 4 5 P O L K
1 8 4 9 T A Y LOR

J O H N
J O H N
J O H N
MART I N
RICHARD
J O H N

GEORGE
M I LLARD

ADAMS
CALHOUN
CALHOUN
VAN BUREN
JOHNSON
TYLER

DALLAS
FILLMORE

A38 IDAHO IDAHO
A3$ MONTANA MONTANA
A 3 0 N.D. ND
A30 S . D . S D
A 3 0 WASHINGTON WASH
A3$ WYOMING WYOMING
A 3 1 UTAH UTAH

Set ST. NSTATE

STATES HAWAII HAWAII 1959HONOLULU 64 24 47 7713000
4 0 4 1HONOLULU 294 1 94 STATES IDAHO IDAHO

1890BOISE 83557 13 705000 4 1 4 0
STATES ILLINOIS ILLINOIS 1818SPRING. 56400 25 109740jbfl

4 26 CHICA AGO 3550404ROCKFORD 132109PEORIA
103 162STATES INDIANA INDIANA 1816INDIANAP. 36291 38
50671a00 12 13 6INDIANAP. 476258GARY 178320

FORTWAY NE 172594EVANSVILLE 144463SOUTH BEND 132445HAMMOND ,111698
STATES IOWA IOWA 1846DES MOINES 56290 26 2746000

25 9 2DES MOINES 206739CED. RAP. lfl3545STATES
KANSAS KANSAS 1861TOPEKA 82264 14 2303000 2 9

7 3WICHITA 254698KANSASCITY 121901TOPEKA 119484

a

PRES HARRISON HARRISON BENJAMIN AUGUST 2 % 1833
OHIO OH1 0 5FT. 61N. REPUBLICANMIAHI 0. ENGLISH PRESBYT. 1
LAWYER MARCH 13 19fllPNEUMONIA JOHN ELI ZABETH 2
CAROLINE OCTOBER 20 1853 2MARY APRIL 6

1896 1 1E1868 lA30 2C51
C5 2 PRES MCKINLEY MCKINLEY WILLIAM JANUARY 29

18430HIO OHIO 5FT.lgIN. REPUBLICANALLEGHANY SCOT-IRI'SHMETHODIST
2 LAWYER TEACHER SEPTEMBER 14 19jdlASSASSTN. WILLIAM '

NANCY lIDA JANUARY 25 1871 2 2
El896 El900 2A3 2 A3 3 3C55 C56
C57 PRES ROOSEVET ROOSEVELT THEODORE OCTOBER 2 7

1858NEW YORK NEWYORK 5FT. 10.REPUBLICANHARVARD DUTCH DUTCI IREF .
2LAWYER PUB. OFF. JANUARY 6 1919RHEUMATISHTHEODORE

MARTHA 2ALICE OCTOBER 27 1880 lEDITH
DECEMBER 2 1886 5 1E1904 2A34
A3 5 4C57 C58 C59 C60 PRES TAFT
TAFT WILLIAM H. SEPTEMBER 15 18570HIO OHIO
6FT. 0IN. REPUBLICANYALE SCOT-IRISHUNITARIAN 1 LAWYER MARCH

8 1930DEBILITY ALPHONSO LOUISE lHELEN JUNE
19 1886 3 1E1908 1A36 2

C61 C62 PRES WILSON WILSON WOODROW DECEMBER
28 1856VIRGINIA VIRGINIA 6FT. @IN. DEMOCRATICPRINCETON ENGLISH

PRESBYT. 2LAWYER TEACHER FEBRUARY 3 1924HEART DIS.
JOSEPH JESSE 2ELLEN JUNE 24 1885 3
EDITH DECEMBER 18 1915 fl 2E1912 El916

2A37 A3 8 4C63 C64 C 65 C66

ELECTION El848 1 8 4 8 ~ ~ ~ ~ 0 ~ WHIG 163 lCASS
DEMOCRATIC 127ELECTION El852 1852PIERCE DEMOCRATIC 2 54

lSCOTT WHIG 42ELECTION El856 1856BUCHANNAN
DEMOCRATIC 174 2FREMONT REPUBLICAN 114FI LLMORE AMERICAN

8ELECTION E186fl 186flLINCOLN REPUBLICAN 180 3
DOUGLAS DEMOCRAT1 C 12BRECKRIDGESOU. DEM. 72BELL CONSTIT.

39ELECTION El864 1864LINCOLN REPUBLICAN 21 2 1
MC CLELLANDEMOCRATIC 21ELECTION El868 1868GRANT REPUBLICAN

2 14 lSEYMOUR DEMOCRATIC 80ELECTION El872 1872
GRANT REPIJBLICAN 286 1GREELEY DEMOCRATIC 66

ADMI N
A 2 b MARCH 4 1857BUCHANAN 1 JOHN BRECKRI DGE

3MINNESOTA MINN OREGON OREGON KANSAS KANSAS ADMIN
A2 1 MARCH 4 1 8 6 1 L I N C O L N 1HANNIBAL . HAMLIN

'C 2W. VA. WVA NEVADA NEVADA ADMIN A 2 2 MARCH
4 1865LINCOLN lANDREW JOHNSON bADMIN

A 2 3 APRI L 15 1865JOHNSONA b 1NEBRASKA
NEBRASKA ADMIN A 2 4 MARCH 4 1869GRANT 1
SCH W LER COLFAX OADMIN A 2 5 MARCH 4 1873
GRANT lHENRY W I LSON 1COLORADO COLORADO . ADMIN
A 2 6 MARCH 4 1877HAYES 1WILLIAM WHEELER

fl ADMIN A 2 7 MARCH 4 1 8 8 1 G A R F I E L D 1
CHESTER ARTHUR BADMIN A 2 8 SEPTEMBER 2 0 1881
ARTHUR 0 flADMIN A 2 9 MARCH 4 1885
C LEV€ LAN lTMOMA!3 HENDRICKS b

CONGRESS C 7 2
FEDERALIST 14DEM- REP 18 2FEDERALIST 36DEM- REP

69CONGRESS C 8 2FEDERALI S T 9DEM-REP 2 5
ZFEDERALIST 39DEM-REP lfl2CONGRESS C 9 2

FEDERAL1 S T 7 DEM- REP 2 7 2FEDERALIST 2 5DEM- REP
116CONGRESS C 10 2FEDERALIST 6DEM-REP 2 8

2FEDERALIST 24DEM- REP 118CONGRESS C 1 1 2
FEDERALIST 6DEM-REP 2 8 2FEDERALIST 48DEM-REP

94CONGRESS C 1 2 2FEDERALIST 6DEM- REP 3$
ZFEDERALIST 36DEM- REP lfl8CONGRESS C 1 3 2

FEDERAL1 ST 9DEM- REP 2 7 2FEDERALIST 68DEM-REP
112CONGRESS C 1 4 2FEDERALIST 1 IDEM-REP 2 5

ZFEDERALIST 65DEM- REP 117CONGRESS C 1 5 2
FEDERALIST 1flDEM- REP 34 2FEDERALIST 42DEM-REP

141CONGRESS C 1 6 ZFEDERALIST 7DEM- REP 35
2FEDERALIST 27DEM- REP 156

APPENDIX D.

P r o g r a m t o L o a d R a w D a t a into STDS D a t a B a s e

*** SER4 : PRES. TEST <10,04,76> ***

SUBROUTINE TEST (NUM,SET)
IMPLlCIT INTEGER (A-X, Z, $)
INTEGER B(6) ,C(13), INC(13)/13*0/ ,NB(6)/6*0/
INTEGER STAT/~STAT~/,PRES/~PRES~/,ELEC/~ELEC~/,CONG/~CONG~/,ADMI/~ADMI~/
LOGICAL*l A(S@fl@f)),BA(32768) ,BB(32768) ,BC(32768) ,BD(32768) ,BE(32768 ,~~(32768)
LOGICAL*l XX(4) , ZZ (4)
INTEGER L C (1 3) / 9 ~ , 4 ~ , 2 ~ 2 , 1 2 , 5 2 , 1 2 , 6 , 6 , 8 ~ , 7 ~ , 2 4 , 2 4 , 2 4 /
EQUIVALENCE (NB (1) ,NBA) , (NB (2) ,NBB) , (NB (3) ,NBC) , (NB(4) ,NBD) , (NB (5) , NBE) , (NB (6) , NBF)
EQUIVALENCE (Z,ZZ (I)), (X,XX(l))
NUMAX=NUM*8@
IF(NUM.GT.0) GO TO 101
PRINT 100
FORMAT(' *** TEST(CARD,ARRAY) Q., STATE,CITY,PRES,OCC,SPOUC,EYEAR,',
* ' ,PADbl,CONG, ELEC,ADMIN ,NSTKI'ES ,SENATEHOSE *** ')
RETURN

L=0
LL=b
SWl=0
SW2=0
SW3=0
sw4=fl
x=0
CALL GBLOCK(l,SET,l ,NUM,Sflfl@fl,A(l))
B(l) =$AD(BA)
B(2) =$AD(BB)
B (3) =$AD (BC)
B (4) =$AD(BD)
B (5) =$AD (BE)
B (6) =$AD(BF)
DO 1fl2 I=1,13
CALL $OUT(C(I) ,INC(I) ,LC(I) ,0,8 ,LC(I) ,2,2)
PRINT 9801
FORMAT (' WLT ')

L=L+LL
LL=0
IF(L. GE.NUMAX) GO TO 6060
ZZ (1) =A(L+l)
ZZ (2)=A(L+2)
ZZ(3) =A(L+3)
ZZ(4) =A(L+4)
IF(Z.CQ.STAT) CO TO 1000
SWl=SW1+1
IF(Z.EQ.ELEC), GO TO 2000
SW2=SW2+1
IF(Z.EQ.PRES) GO TO 3000
SW3=SW3+1
IF(Z. EQ.ADM1) GO TO 4000
SW4=SW4+1
IF(Z.EQ.CONG) GO TO 5000
PRINT 9009,Z,L,LL
FORMAT('Z,L,LL: ' ,Z9,216)

'lu 6flfl0

STATES[C(l)l, CITY(C(2)l
CALL IMVC(90,BA,NBA,AJL+30)
NBA=NBA+9D
LL= 11p
z =fl
zz (4) =A (T,+I,,L)
Z=Z-240
XX(4) =A(L+LL-1)

z= (X-240)*10+Z
IF(Z.EQ.0) GO TO 200
DO 1100 1=1,z
CALL IMVC(20,BB,NBB,A,L+l0)
NBB=NBB+20
CALL IMVC(?0,BB,NBB,A,L+LL)
NBB=NBB+20
LL=LL+20
GO TO 200

PRES [C (3)] , OCC [C (4)7] , SPOUCEfC (5)] , EYEAR [C (6)] , PADM[C (7).] , CONG [C (8)]
IF(SWl.GT.1) GO TO 2001 . .
~0'2002 1=1; 2
CALL $EMPTY (B(1) ,INC(I) ,NB(I))
CALL $SET(C(I) ,INC(I) ,1)
NB(I)=0
CALL PUTD (C (1) , 'ST. STATE')
CALL PUTD(C(2), 'ST. CITY')
PRINT 9002
FORMAT(' 1000')

CALL IMVC (2,BA,NBA,SW1,2)
NBA=NBA+2
CALL IMVC (140,BA,NBA,A,L+lfl)
NBA=NBA+140
LL= 160
z=0
ZZ (4) =A(L+ LL)
Z=Z-240
IF(Z.EQ.0) GO TO 2100

DO 2010 I=l,Z
CALL IhIVC (2, BB,NBB,SW1,2)
NBB=NBB+2
CALL IMVC(10,BB,NBB,A,L+LL)
NBB=NBB+la
LL=LL+ 16
CALL IhNC(60,BA,NBA,AJL+LL)
NBA=NBA+60
LL=LL+70
z=0
ZZ (4) =A(L+LL)
Z=Z- 246
IF(Z.EQ.0) GO TO 2200

DO 2110 I=l,Z
CALL IbWC (2,BC ,NBC,SW1,2)
NBC=NBC+2
CALL IhIVC(50,BC,NBCJA,L+LL)
NBC=NBC+Sfl
LL=LL+50

z=0
LL=LL+'l0
ZZ (4) =A (L+ LL)
Z=Z-240
IF(Z.EQ.0) GO TO 2300
DO 2210 I=l,Z
CALL IMVC(2,BD ,NBD,SW1,2)
NBD=NBD+2
CALL IMVC (ls,BD,NBD,A,L+LL)
NBD=NBD+lO
LL=LL+l0

SPOUCE-5

EYEAR- 6

ZZ (4) =A(L+LL)
Z=Z-240
IF(Z.EQ.0) GO TO 2480
DO 2310 I=l,Z
CALL IMVC(2,BE ,NBE,SWl, 2)
NBE=NBE+2
CALL IMVC(4,BEJNBE,AJL+LL)
NBE=NBE+4
LL=LL+10

CONG- 8
z=0
LL=LL+lfl
ZZ (4) =A(L+LL)
Z=Z-240
IF(Z.EQ.0) GO TO 200
DO 2416 I=l,Z
CALL IMVC(2,BF,NBF,SW1,2)
NBF=NBF+2
CALL IMVC(4,BF,NBF,AJL+LL)
NBF=NBF+4
LL=LL+l0
GO TO 260

lF(SW2.GT.l) GO TO 3010
DO 30@1 I=1,6
CALL $EMPTY (B(1) ,INC(I+2) ,NB(l))
CALL $SET(C(I+2), INC(I+2), 1)
PRINT 9003
FORMAT (' 2000')
NB (I) =0

CALL IMVC(50,BA,NBA,AJL+10)
NBA=NBA+50
LL=70
z=0
ZZ (4) =A(L+LL)
Z=Z- 240
IF(Z. EQ. 0) GO TO 200
CALL IMVC(30,BA,NBAJA,L+LL)
NBA=NBA+ 30
LL=LL+30
TF(Z.EQ. 1) GO TO 200
DO 3100 I=2,Z
CALL IMVC(S~,BA,NBA,A,L+l~)
NBA=NBA+Sg
CALL IMVC (30 ,BA,NBA,A,L+LL)
NBA=NBA+30
LL=LL+30
GO TO 200

IF (SW3.GT.l) GO TO 4010
CALL $EMPTY (B (1) , INC(9) ,NBA)
CALL $SET(C (9), INC (9) ,1)
N B A = ~
PRINT 9004
FORMAT(' 3000')
CALL IMVC (50 ,BA,NBA,A, L+10)
LL-70
NBA=NBA+50
z=0
ZZ (4) =A(L+LL)
Z=Z-240
IF(Z.NE.0) GO TO 4011
BA(NBA+l) =A(L+LL- 1)
CALL IMVC(19,BA,NBA+1,BAJNBA)

ELEC [C (9)]

ADMIN [C(18)]

CALL IMVC(20,BA,NBA1A, L+LL)
LL=LL+20
NBA=NBA+ 20
LL=LL+10
z=0
ZZ (4)=A(L+LL)
Z=Z-240
IF(Z.EQ.0) GO TO 200

DO 4200 I=l,Z
CALL IMVC(4,BB,NBB,A,L+la)
NBB=NBB+4
CALL IMVC(20,BB,NBB,ASL+LL)
NBB=NBB+20
LL=LL+20
GO TO 200

IF(SW4.GT. 1) GO TO 5010
DO 5001 I=1,2
CALL $EMPTY(B(I) , INC (I+9) ,NB(I))
CALL $SET(C (I+9) ,INC (I+9) , I)
NB (I) -0
PRINT 9005
FORMAT(' 4000')
LL=30
z=p
ZZ(4)=A(L+LL)
Z=Z-240
IF(Z.EQ.0) GO TO 5200

DO 5100 I=l,Z
CALL IMVC(4,BA,NBA,A,L+l0)
NBA=NBA+4
CALL IMVC(20,BA,NBA1A,L+LL)
LL=LL+20
NBA=NBA+20
LL=LL+10
z =0
ZZ(4) =A(L+LL)
Z=Z-240
IF(Z.EQ.0) GO TO 200

DO 5300 I=l,Z
CALL IMVC(4,BB,NBB,A,L+lg)
NBB=NBB+4
CALL IMVC(20,BB,NBB1A,L+LL)
LL=LL+20
NBB=NBB+20
Go TO 206

DO 6001 I=1,2
CALL $EMPTY(B(I) , INC(I+ll) ,NB(I))
CALL $SET(C(I+ll) ,INC(I+11) ,1)
NB (I) =0
PRINT 9006
FORMAT('PUTDt)
CALL PUTD(C(3), 'ST.PRESt)
CALL PWDIC (4) , 'ST.OCCt) .
CALL PUTD(C (5) , 'ST.SPOUCt)
CALL PUTD(C(6). 'ST.EYEARt)
CALL PVTD(C(7), 'ST. PADM')
CALL P W D (C (8), 'ST. CONG')
CALL PUTD(C(9) ,'ST.ELECt)
CALL PUTD(C(la), 'ST.ADMINt)

SENATE- 12

HOUSE- 13

CAI.1, PImD(C(ll), 'ST.NSTATEf)
CALL PUTD(C(12),'ST.SENATEf)
CALL PUTD(C(13),'ST.HOUSE')
DO 6100 I=1,13
CALL FPEF.(r(T))
RETURN
END

REFERENCES

1. D. L. Childs, "Feasibility of a Set-Theoretic Data Structure: A General
Structure Based on a Reconstituted Definition of Relation," Proceedings 1
of IFIP Congress, 1968 (North-Holland Publishing Co., Amsterdam, 1969),
pp. 420-430.

2. D. L. Childs, "Description of a Set Theoretic Data Structure," AFIPS
Conference Proceedings, Vol. 33 Part 1, (AFIPS Press, Montvale, NJ, 1968),
pp. 557-564.

3. D. L. Childs, "Extended Set Theory: A Formalism for the Design, Implemen-
tation, and 0peration.of Information Systems," Current Trends on Program-
ming Methodology, Vol. 4, R. T. Yeh, Ed. (Prentice-Hall, Inc., Englewood
Cliffs, NJ - to be published).

4. W. T. Hardgrave, "A Technique for Implementing a Set Processor," Assoc.
-Cornput. Mach. FDT - 8, 86 (1976); (also published in ACM SIGPLAN Notices,
Vol. I1 (1976).

5. W. T. Hardgrave, Set Processing: A Tool for Data Management, Department
of Information Systems Management, University of Maryland, Information
Systems Management Technical Report /I6 (1976).

6. W. T. Hardgrave, Accessing Technical Data Bases Uszng STDS: A Collection
of Scenarios, Irlstitute for Computer Applications in Science and Engineer-
ing, Hampton, VA, ICASE Report 75-8 (1975).

7. W. T. Hardgrave "Set Processing in a Network Environment," Institute for
Computer Applications in Science and Engineering, Hampton, VA, ICASE
Report 75-7 (1975).

11 8. E. H. Sibley, Ed., , Computing Surveys," J. Assoc. Cornput. Mach. 8, 1-151
(1976).

9. STDS Reference Manual, Set Theoretic Information Systems Corp., Ann Arbor,
MI (1975).

10. STDS-OS Reference Manual Version 3.02, Set Theoretic Information Systems
Corp., Ann Arbor, MI.

11. D. E. Bakkom, E. W. Birss, and S. Woodison, IMS Logical Data Bases: An
I l lus tra t ive Excmrple, University of Michigan, Ann Arbor, MI, Data Trans-
lation Technical Report 76DB2 (1976).

12. D. G. Severenc.e, and G. M. Lohman, "Differential Files: Their Applica-
tion to the Maintenance of Large Data Bases," ACM Trans. Database Sys. 1,

: 256-267 (1976).

This raport was prepared is an ammt of work
spommd by tb, United Stator C o v w . Neither the
U W States nar the United States Eneqp Research
& Devcbpment -tion, aor my of their
employees, nor any of their conbpctorq (~~bcontracton,
a tbsh employees, makes my warranty, e- a
inpk4, or amunes any l e d lLbllity or rerpodbllity
for the aekuracy, couipkt8am or udefthwn of any
information, apparatur, product or prproces dished, or
repnrmtr that i t a use would not i&qe
gfvatelyowned rights.

NOTICE

ReLrence to a company or product name doe: not
hrrply approval ex recommendation of the product by
tbo URivenity of Califo~nia or the US. Enmw Reamoh
& Development Administfation to the excludon of
othcn that may be suitable.

Rinted in the United States of America
Available from

National Technical lnformation Service
U.S. Department of Commerce
5285 Port Royal Road
Spriqtiild, VA 22161
Price: Printed Copy S ; Microfkhe 53.00

malit DolneraCc
Ria Pam Rango -- - P f i i

001-025 S 3.50 326-350 10.00
026-050 4.00 351-375 10.50
051-075 4.50 376-400 10.75
076-100 5.00 461-425 11.00
101-125 5.50 426-450 11.75
126-150 6.00 451-475 12.00
151-175 6.75 476-500 12.50
176-200 72% 501-525 12.75
201-225 7.76 526-558 13.00
226-250 8.00 551-575 13.50
251-275 9.00 576600 13.75
276-300 9.25 601-up
301 -325 9.75 -
*AM $250 tor aach ddithul LOO pa@ laotcmcnt fmm 601 to 1.000 m:

add $430 for orb .BBitioDul 100 pa@ imcr-t orsr 1.m $ages.

