Now, consider the problem of printing out the part
number, part name, and quantity committed for every part
used in the project whose project name is “alpha.” The
following observations may be made regardless of which
available tree-oriented information system is selected to
tackle this problem. If a program P is developed for this
problem assuming one of the five structures above—that
is, P makes no test to determine which structure is in ef-
fect—then P will fail on at least three of the remaining
structures. More specifically, if P succeeds with structure 5,
it will fail with all the others; if P succeeds with structure 3
or 4, it will fail with at least 1, 2, and 5; if P succeeds with
1 or 2, it will fail with at least 3, 4, and 5. The reason is
simple in each case. In the absence of a test to determine
which structure is in effect, P fails because an attempt is
made to exceute a reference to a nonexistent file (available
systems treat this as an error) or no attempt is made to
execute a reference to a file containing needed information.
The reader who is not convineed should develop sample
programs for this simple problem.

Sinee, in general, it is not practical to develop applica-
tion programs which test for all tree structurings permitted
by the system, these programs fail when a change in
structure becomes necessary.

Systems which provide users with a network model of
the data run into similar difficulties. In both the tree and
network cases, the user (or his program) is required to
exploit a collection of user access paths to the data. It does
not matter whether these paths are in close correspondence
with pointer-defined paths in the stored representation—in
IDS the correspondence is extremely simple, in TDMS it is
just the opposite. The consequence, regardless of the stored
representation, is that terminal activities and programs be-
come dependent on the continued existence of the user
access paths.

One solution to this is to adopt the policy that once a
user access path is defined it will not be made obsolete un-
til all application programs using that path have become
obsolete. Such a policy is not practical, because the number
of access paths in the total model for the community of
users of a data bank would eventually become excessively
large.

1.3. A REeraTIONAL VIEW OF DATA

The _term_relation is used here in its accepted mathe-
matical sense. Given sets Sy, Sz, -+ -, S. (not necessarily
distinet), R is a relation on these n sets if it is a set of n-
tuples each of which has its first element from S;, its
second elenient from S, , and so on.! We shall refer to S; as
the jth in of R. As defined above, R is said to have

degree n. Relations of degree 1 are often called unary, de-
gree 2 binary, degree 3 ternary, and degree n n-ary.

Yor expository reasons, we shall frequently make use of
an aIIay m&mmgg of relations, but it must be re-

membered that thls partlcula.r x*epmentatlon is not an es-

<
1 More concisely, R _ig a subset of the Carteésian product S X
8 X see X 8.

Yolume 13 / Number 6 / June, 1970

. ray which represents an n-ary relation R has the following

properties:

(1) Each row represents an n-tuple of R.

(2) The ordering of rows is immaterial.

(3) All rows are distinct.

(4) The ordering of columns is significant—it corre-
sponds to the ordering Sy, S:, -+, Sa of the do-
mains on which R is defined (see, however, remarks
below on domain-ordered and domsain-unordered
relations).

(5) The significance of each column is partially con-
veyed by labeling it with the name of the corre-
sponding domain.

The example in Figure 1 illustrates a relation of degree
4, called supply, which reflects the shipments-in-progress
of parts from specified suppliers to specified projects in
specified quantities,

supply (supplier part project gquantily)

1 2 5 17

1 3 5 23

2 3 7 9

2 7 b 4

4 1 1 12
Fra. 1. A relation of degree 4

One might ask: If the columns are labeled by the name
of corresponding domains, why should the ordering of col-
umns matter? As the example in Figure 2 shows, two col-
umns may have identical headings (indicating identical
domains) but possess distinct meanings with respect to the
relation. The relation depicted is called component. It is a
ternary relation, whose first two domains are called part
and third domain is called quantity. The meaning of com-
ponent (z, y, z) is that part z is an immediate component
(or subassembly) of part y, and z units of part z are needed
to assemble one unit of part y. It is a relation which plays
a critical role in the parts explosion problem.

componeni (part part quantity)
1 5 9
2 5 7
3 5 2
2 6 12
3 6 3
4 7 1
6 7 1

Fic. 2. A relation with two identical domains

It is a remarkable fact that several existing information
systems (chiefly those based on tree-structured files) fail
to provide data representations for relations which have
two or more identical domains. The present version of
IMS/360 [5] is an example of such a system.

The totality of data in a data bank may be viewed as a
collection of time-varying relations. These relations are of
assorted degrees. As time progresses, each n-ary relation
may be subject to insertion of additional n-tuples, deletion
of existing ones, and alteration of components of any of its
existing n-tuples.

Communications of the ACM 379

In many commercial, governmental, and scientific data
banks, however, some of the relations are of quite high de-
gree (a degree of 30 is not at all uncommon). Users should
not normally be burdened with remembering the domain
ordering of any relation (for example, the ordering supplrer,
then part, then project, then quantity in the relation supply).
Accordingly, we propose that users deal, not with relations
which are domain-ordered, but with relatzonships which are
their domain-unordered counterparts.’ To accomplish this,
domains must be uniquely identifiable at least within any
given relation, without using position. Thus, where there
are two or more identical domains, we require in each case
that the domain name be qualified by a distinctive role
name, which serves to identify the role played by that
domain in the given relation. For example, in the relation
component of Figure 2, the first domsain part might be
qualified by the role name sub, and the second by super, so
that users could deal with the relationship component and
its domains—sub.part super.part, quantity—without regard
to any ordering between these domains.

To sum up, it is proposed that most users should interact

with a relatlonal model of the data consisting of a collection

name together with the names of its domains (role quali-
fied whenever necessary).” Even this information might be
offered in menu 'style by the system (subject to security
and privacy co! ints) upon request by the user.

There are usually many alternative ways in which a re-
lational model may be established for a data bank. In
order to discuss & preferred way (or normal form), we
must first mtrodﬁee a few additional concepts (active
domain, primary key, foreign key, nonsimple domain)
and establish some!links with terminology currently in use
in information systems programming. In the remainder of
this paper, we shall not bother to distinguish between re-
lations and relatmnslups except where it appears advan-
tageous to be explicit.

Consider an example of a data bank which includes rela-
tions concerning parts, projects, and suppliers. One rela-
tion called part is defined on the following domains:

(1) part number |

(2) part name

(3) part color ‘

(4) part weight |

(5) quantity on hand

(6) quantity on order
and possibly other domains as well. Each of these domains
is, in effect, a pool of values, some or all of which may be
represented in the data bank at any instant. While it is
conceivable that, at some instant, all part colors are pres-
ent, it is unlikely tha.t. all posmble part welghts part

t In mathematical terms, a rela is g nee

those relations that are eqmvnlent under permntatmn of doma.ms
(see Section 2.1.1).

3 Naturally, as with any data put into and retrieved from a ecom-
puter system, the user will normally make far more effective use
of the data if he is aware of it meaning.

380 Communieations of the ACM

names, and part numbers are. We shall call the set of
values represented at some instant the aciive domain at that
instant.

Normally, one domain (or combination of domains) of a
given relation has values which uniquely identify each ele-
ment (n-tuple) of that relation. Such a domain (or com-
bination) is called a primary key. In the example above,
part number would be a primary key, while part color
would not be. A primary key is nonredundant if it is either
a simple domain (not a combination) or a combination
such that none of the participating simple domains is
superfluous in uniquely identifying each element. A. rela-
tion may possess more than one nonredundant primary
key. This would be the case in the example if different parts
were always given distinet names. Whenever a relation
has two or more nonredundant primary keys, one of them
is arbitrarily selected and called the primary key of that re-
lation,

A common requirement is for elements of a relation to
cross-reference other elements of the same relation or ele-
ments of a different relation. Keys provide a user-oriented
meansg (but not the only means) of expressing such cross-
references. We shall call a domain (or domain combina-
tion) of relation R a foreign key if it is not the primary key
of R but its elements are values of the primary key of some
relation § (the possibility that S and R are identical is not
excluded). In the relation supply of Figure 1, the combina-
tion of supplier, part, project is the primary key, while each
of these three domains taken separately is a foreign key.

In previous work there has been a strong tendency to
treat the data in a data bank as consisting of two parts, one
part consisting of entity descriptions (for example, descrip-
tions of suppliers) and the other part consisting of rela-
tions between the various entities or types of entities (for
example, the supply relation). This distinction is difficult
to maintain when one may have foreign keys in any rela-
tion whatsoever. In the user’s relational model there ap-
pears to be no advantage to making such a distinction
(there may be some advantage, however, when one applies
relational concepts to machine representations of the user’s
set of relationships).

So far, we have discussed examples of relations which are
defined on simple domains—domains whose elements are
atomic (nondecomposable) values. Nonatomic values can
be discussed within the relational framework. Thus, some
domains may have relations as elements. These relations
may, in turn, be defined on nonsimple domains, and so on.
For example, one of the domains on which the relation em-
ployee is defined might be salary history. An element of the
salary history domain is a binary relation defined on the do-~
main date and the domain salary. The salary history domain
is the set of all such binary relations. At any instant of time
there are as many instances of the salary history relation
in the data bank as there are employees. In contrast, there
is only one instance of the employee relation.

The terms attribute and repeating group in present data
base terminology are roughly analogous to simple domain

Volume 13 / Number 6 / June, 1970

