[XSP-XMLx: 11/13b/00]
DRAFT-4

X8D Technology D L Childs

XSP TECHNOLOGY FOR XML SYSTEMS DESIGN & DEVELOPMENT

A Mathematical Foundation For Resolving Critical XML Design & Development Issues

ABSTRACT. The advantages of Extended Set Processing, XSP, which favors generalized
data access operations over the specialized data access structures of traditional data
processing technologies, is presented. It’s application to the design and development of
highly distributed XML based systems is studied from a formal perspective.

For an operation-centric approach, like XSP, to work, all operations must to be formally
defined. For operations to be formally defined requires that their operands be formally
defined. This is achieved in the paper through the use of Extended Set Theory, XST, that
provides a formal means to capture the mathematical identity of any and all data structures.
This includes both conceptual data structures and physical data structures, along with the
formal expression of any transformation of them. This, in turn, provides a criteria for
strong data independence allowing the implementation of systems with adaptive performance
control. Specific attention will be given to capturing the mathematical identities of XML
structures and Relational Data structures; transformations between them; and the
operations required for processing heterogeneous data in highly distributed environments.

1. INTRODUCTION

The pervasiveness of the World Wide Web; the advances in processing power and storage capacity;
and the universal craving for instant information are creating data access and information sharing
problems that are not being adequately addressed by traditional data processing technologies.

For this reason a new approach to data access and information sharing is being initiated in the
form of an Extensible Markup Language, XML, document processing standard proposed by the
World Wide Web Consortium, W3C, [Wc98]. Both academics and businessmen have embraced the
potential of this XML processing standard with great enthusiasm. However, the realization of this
potential is not without certain implementation challenges.

Three implementation challenges are addressed by this paper. Specifically, they are to provide
low-level support to high-level applications for:

1) Processing more than one XML document at a time.

2) Processing distributed XML documents.

3) Processing a mix of XML documents and legacy data together.

Without support to provide applications with all three of the above capabilities, no real distributed
information sharing or data processing can be accomplished using XMI documents. Not only
do these three capabilities have to be implemented for general application support, but also
implemented in a way that does not impede overall system performance. A resolution to these
implementation issues is presented in this paper.

This presentation begins with an introduction to the XML movement, then introduces the concept
of a VPS schema that provides an architectural abstraction of a computer platform. The VPS
schema is then used to show the relevance of mathematical identity and strong data independence
to the resolution of the above issues. Next, the concept of XSP technology is introduced to provide
formal ‘handles’ on mathematical identity and strong data independence as they apply to systems
implementation. XSP technology is then used to articulate the design, development, and operation
requirements of highly distributed XML based systems supporting information sharing through
parallel processing of heterogeneous data.

Copyright © 2000 INTEGRATED INFORMATION SYSTEMS ~ ANN ARBOR MI ~ iis@umich.edu

2. THE XML MOVEMENT

Though XML technologies are relatively new and the standards are still in a state of flux, many
companies have already been formed or refocused to capitalize on the potential promise of XML.
According to Dr. David Maier, [Ma98]:

XML threatens to expand beyond its document markup origins to become the basis for data
interchange on the Internet. Once it becomes pervasive, it's not hard to imagine that many
information sources will structure their external view as a repository of XML data, no matter what
their internal storage mechanisms. It is not a great leap from there to viewing the combined
information on the Internet as one big distributed XML database.

If Dr. Maier is correct (and his record indicates that he probably is), the whole face of computing,
as we now know it, will change dramatically. Dr. Maier’s use of the word threatens is not ill chosen.
Change is not always for the better. Will XML be a plague or a panacea? What assurance is
there that the new XML processing standards will co-exist compatibly with existing data process-
ing implementations? Will overall data processing performance improve, or will performance be
dramatically worse? If internal storage mechanisms can be structurally different than the external
structure, what technology will ensure data integrity when transforming from structure to struc-
ture? The promise of XML can not be willed into existence by a committee, it has to be derived
into existence through a sound technology.

The title of this paper purports that XSP technology can play a prominent role in the design and
development of XML based systems. For Dr. Maier’s prediction of ‘viewing the combined infor-
mation on the Internet as one big distributed XML database’ to become a reality, some seemingly
intractable distributed data processing issues need to be resolved. Delineating and resolving these
XML based distributed data processing issues is the focus of this paper.

2.1. XML: Plague or Panacea. The justification for introducing any new technology needs
to be very compelling in order to attract interest. It is necessary to show that only with the
new technology can certain advantages be achieved, and that without the new technology certain
disadvantages are assured. Such is the case with XML.

There may be many reasons why XML is attractive, but there is one singularly significant reason
why the approach can offer great potential advantages or can promote very serious disadvantages.

All XML DOCUMENTS ARE WELL-FORMED!

This means there are precise rules dictating a well-defined specification of both the XML document
content and its structure. Unlike those of the Relational Data Model, RDM, these rules are not
mathematical rules of concurrence, but are empirical rules of form. This is a mixed blessing.

This standard structural uniformity of representation certainly provides ease of cross platform data
interchange, but it is not the ideal data structure representation for all potential processing needs.
In point of fact, it is a less than ideal data structure representation for most processing needs. This
amounts to a panacea for data sharing, but a plague for data processing.

Unfortunately, the ‘plague’ may already have started, [Ma98]: ‘it’s not hard to imagine that many
information sources will structure their external view as a repository of XML data, no matter what
their internal storage mechanisms.’ If as Dr. Maier predicts, we may eventually be faced with ‘one
big distributed XML database’ and if all existing data and all future data has to be structured as
an XML document prior to processing, timely information access will be a ‘thing of the past’.

Since XML specifications distinguish between XML-content and XML-structure, it would seem that
if a new technology could provide a mathematical foundation that preserved this distinction and
at the same time provided operations that transformed ‘XML-structures’ while preserving ‘XML-
content’, such a technology might attract some interest. For then, all data could have any internal

2

and external form desired and still be processed in an XML environment without having been
coerced into an XML structure. Extended Set Processing, XSP, technology provides this form of
data structure independence within and between the external and internal levels.

The key to all XSP solutions, including adaptive performance control, lies in the concept of mathe-
matical identity. This is the essence of XSP technology. Since the very nature of the XSP approach
is highly mathematical in nature, some mathematics is request for presenting pertinent concepts.
This paper is intended to be read and understood by both practicing mathematicians and by non
mathematicians. The paper will include the mathematics for completeness, but will place primary
emphasis on textual explanations. It is hoped that the necessity of the mathematics will not impede
an intuitive understanding of XSP technology concepts.

3. VPS SYSTEM ARCHITECTURE SCHEMA

Before launching into the particulars of XSP technology, the reasons for requiring such a technology
should be well understood. With XML based systems the difficulty concerns low level implementa-
tion issues and not high level presentation issues. These issues can best be understood by relating
them to specific levels within a system’s architecture.

Every system platform can be thought of in terms of five components: three disjoint architectural
levels, connected by two intervening interfaces, as the visual aid to the right, a VPS schema, depicts.
Each one of these five components has a very specific role in the overall behavior of
the system. The user view level, V, is that part of the system perceived by people.
The system processing level, P, consists of the system’s CPUs and memory. The
secondary storage level, §, includes all of the system’s immediate secondary storage
devices. Mathematically, these three architectural levels are disjoint spaces of
operations and operands that are structurally distinct from each other. These
spaces are connected only through the two interfaces. The View and the Processing
spaces are connected through the V/P interface. The Processing and Storage spaces S

are connected through the P/S interface (a.k.a. the I/O interface). It is very \—/
important to notice that everything above the V/P interface is external to the

machine environment and that everything below the V/P interface is internal to the

machine environment. Multiple systems would be connected through an additional P/P interface.

)

V/P

>

P/S

VPS SCHEMA

3.1. VPS & ANSI/SPARC. This VPS system architectural schema should not be confused with
the ANSI/SPARC three level architecture,[Da95]. The ANSI/SPARC architecture was introduced
in the late 1970s to provide a framework for describing general database concepts and for explaining
the structure of specific database systems. The ANSI/SPARC schema consists of three levels: the
external level, which was concerned with the way data is viewed by individual users; the conceptual
level, which was concerned with the way data was viewed by the community of users; and internal
level, which was concerned with how data was physically represented in the computer.

It is important to note that the RDM deals specifically with the external and conceptual levels
only. To quote Date,[Da95],
The internal level will not be ‘“relational,” because the objects at that level will not be just
(stored) relational tables - instead, they will be the same kinds of object found at the internal
level of any other kind of system (stored records, pointers, indexes, hashes, etc.). In fact,

relational theory as such has nothing whatsoever to say about the internal level; it is concerned
with how the database looks to the user.

The VPS system architectural schema is slightly different yet completely compatible with the
ANSI/SPARC three level architecture. It ANSI/SPARC schema emphasizes an interest in user
views of data, while the VPS schema is biased toward machine representations of data.

3

The VPS schema View level includes both the external and conceptual ANSI/SPARC levels, while
the ANSI/SPARC internal level is separated into the Processing level and the Storage level. The
schemas are functionally compatible, yet each has its own specific bias, as is evident from the
different resolutions. The ANSI/SPARC schema is more concerned with the details of the View
level, while the VPS schema is more concerned with the details of the internal level. For our purposes
we will generally use the term external level to mean not the internal level. This is compatible with
Dr. Maier’s usage in [Ma98].

By using the VPS schema architectural levels of a system to provide context, many knotty issues can
be untangled. For example the RDM term ‘table’ lives in only one of the levels, in V. The term ‘file’
also lives in only one level, in S. Though ‘table” and ‘file’ are related, they do not co-exist at the
same level. Other terms like ‘relation’, ‘object’, ‘record’, ‘cylinder’, ‘index’, ‘B-tree’, and ‘access
method” have residence at some levels with relationships to other terms at other levels. Which
terms belong where? Which terms, if any, co-exist in more than one environment, but with totally
different structures? How do these terms relate across interfaces? Is the relationship between these
terms across interfaces data dependent or data independent?

3.2. Strong Data Independence. The term ‘data dependence’ was introduced in the ’70s to
describe the fact that an operation at one level needed to know how data was structured at a
different level in order to execute correctly. The term ‘data independence’ describes the fact that
an operation at one level DID NOT need to know how data was structured at a different level in
order to execute correctly. The capability of data independence did not exist at either the V/P
interface nor at the P/S interface until introduced at the V/P interface by the RDM. It should be
noted that no commercial system has ever provided data independence at the P/S interface, yet
data independence is the key to functional generality, performance optimization, and distributed
data access.

When the term data independence is used in the context of databases, it means that knowledge of
how data is represented at the internal level is not available to users or applications a the conceptual
and external levels.

This concept, when actually applied to RDM implementations, is more of a data representation
‘isolation’ than one of data representation ‘independence’. For if a RDM implementation were truly
independent, then the form of an SQL query at the external level would have no bearing on the
performance of the execution of that query at the internal level, but it does.

A different term needs to be introduced when it is important to distinguish ‘data representation
independence’ from ‘data representation isolation’. The term used will be strong data independence.

4. XSP TECHNOLOGY

To achieve the development of strong data independence between an two distinct environments
requires any candidate technology to provide a common mathematical representation of both the
data to be operated on and the operations to be performed on such data. RDM technology does
this at the V/P interface by representing data as ‘relations’ with ‘relational’ operations.

Three tasks are now required of any new technology: define the operations and operands that need
to be represented by each environment of interest; define a notation that is suitable within each
environment; and choose a common body of mathematics that is rich enough to provide well-defined
mathematical representations of the operations and operands for all environments of interest. This
last requirement is necessary for ensuring well-defined, function preserving transformations between
environments. (RDM technology fails on this last requirement, since it does not provide any formal
representations for the internal level).

XSP Technology is defined to be a formal system for specifying mathematically sound operations
and operands that can be executed by a digital computer. XSP Technology consists of three
separate formal specifications: Theory, Notation, and Processing.

X8T: Extended Set Theory - Formal axiomatic specification of extensions to the foundations
of Classical set theory that are necessary to support the modeling of computer based
operations and operands.

XSN: Extended Set Notation - Formal set theoretic notation expressing operations and operands of
XST that preserve the mathematical identity of all conceptual and computer-based structures
being modeled for a system.

XSP: Extended Set Processing - Formal specification of a system of XSN defined operations and
operands that can be executed by a computer.

Working backwards, the final objective is an XSP implementation that supports XML document
processing and provides strong data independence at the V/P, P/S, and P/P interfaces.

The role of XSN is to ensure that all choices of representation (linguistic, symbolic, and algorithmic)
preserve the same mathematical content when represented in terms of extended sets, Xsets.

XST, of course, provides the mathematical content. If any operation, operand, or combination of
operations can not be justified within the formal confines of the mathematical framework, then
it can not be included in an XSP implementation. This ensures that all behavior of any XSP
implementation will be mathematically sound (at least in principle).

4.1. XSP Identity Transformations:. The final objective of applying XSP technology to XML
based system implementations, or any other system implementation, is a formal specification, or
mathematical blueprint, of the operations and structures that produce the desired system behavior.

In terms of a VPS schema, this means capturing the mathematical identities of all operations

and structures at each level along with the mathemati- XSP IDENTITY TRANSFORMATIONS

cal description of all transformations between levels.

In the VPS diagram to the right: A and B repre- / \
sent any two collections of XML documents, or A f B

any two collections of RDM tables, or any combi-
nation of XML documents and RDM tables. What
ever they are, their mathematical identities must
be captured by Xsets. Since A and B only exist in
the V space, the mathematical identities of A and
B must be captured as they exist in the V space,
not as they exist after a transformation to a P
space. In fact, the transformation of A to an im-
plementation friendly representation in a P space
is modeled by g; to C;. While the transformation
from an implementation friendly representation to
B is modeled by r; from D;. The process f must

also be defined on A and B as they exist in the V \ @l @ /
space. The process h; must then be defined in the
P space from C; to D; such that the combined application of processes preserve the behavior of
f. More formally, the following must hold for all 4’, (with ‘i’ controlling performance options):

For all xin A, r:(hi(9:(x))) = f(x).

| STO-1 | | STO-3| | STO-4| | STO-6|

This VPS diagram is in the spirit of what mathematicians call a commutative diagram, except that
it is more complicated. The basic mathematical concept is still the same. Whatever [does to
elements of A that maps them to elements of B, then r; on h; on ¢g; on elements of A had better
map to the same results in B.

Implementations based on the mapping of the mathematical identities between spaces are ‘strongly
data independent’. That is, no space has knowledge of how another space organizes data. This is a
much stronger condition then is the RDM ‘data-independence’, that just isolates user applications
from knowledge of how data is represented in secondary storage. As will be shown later in this
paper strong data independence is essential for information sharing in highly distributed systems.

5. XML BASED SYSTEMS

Like the RDM, XML structures are defined as they exist in a user application and are, therefore,
completely contained in the external level, the V-Level. Like the RDM, XML specifications makes
no restrictions (though possibly suggestions) about supporting operations and structures at the
internal level, the P and S levels. Unlike the RDM, which communicates between the external level
and the internal level with mathematically well-defined operations on mathematically well-defined
structures, the XML specification provides no means for communicating across the V/P interface
except by passing the structured representation of the XML documents as they exist at the V-Level.

Thus, the XML standard does not support any form data independence!

This is not progress. In fact it is a through back to the pre-RDM database days where ‘navigating
through secondary storage’ was state-of-the-art technology. Those were the days where the way
data was structured in the V-Level was also the way data was structured in the P-Level, and was
also the way data was structured in the S-Level. This data dependence between levels hindered
expressive functionality and crippled high performance processing. Data dependence was alleviated
by the advent of the RDM. It now appears that data dependence may be resurrected by XML.

The only way to preserve data independence in XML is by communicating through the V/P interface
in the same mathematical manner as does the RDM, with mathematically well-defined operations on
mathematically well-defined operands. There is no widely accepted technology currently available
that is able to provide mathematically well-defined operations on mathematically well-defined XML
documents. It has been shown,[Ch00], that even the RDM technology fails in several ways. Thus,
no widely accepted technology is currently available to provide XML with strong data independence
at either interface and certainly not between system platforms.

To allow development of XML to provide general functionality at the View level, optimal perfor-
mance at the Processing level, adaptive data restructuring at the Storage level, and unrestricted
information sharing between platforms requires a new technology that can support strong data
independence, at both interfaces and between system platforms.

5.1. XML Basics:. There are generally three files that are processed by an XML-compliant
application to display XML content:

The XML Document -
This file contains the document data, typically tagged with meaningful XML elements, some of
which may contain attributes.

An XSL Stylesheet -
The stylesheet dictates how document elements should be formatted when they are displayed,
whether 1t be in a word processor or a browser. Note that one can apply different stylesheets
to the same document, depending on the environment, thus changing its appearance without
affecting any of the underlying data. The separation between content and formatting is an
important distinction in XML.

A DTD, Document Type Definition -
This file specifies rules for how XML document elements, attributes, and other data are defined
and logically related in an XML-compliant document.

These are the three basic file types in an XML based system. Two of them are structurally the
same and the other is a degenerate case of the other two. So there is really only one XML data type.
It should be noted here that the term ‘data type’ is not universally defined in only one way. Some
definitions would allow for any variation between files to necessitate their being of different data
types. That distinction may be of some value in those contexts, but here in a formal set-theoretic
environment, the structural distinctions can be ‘discovered’ by operations and therefore files do not
need to be segregated by data types, but before any mathematically well-defined operations can
be developed for an XML data type, an XML data type must be identified as a mathematically
well-defined operand.

All this really means is that a mathematical notation, any mathematical notation, needs to be
chosen that rigorously, and completely captures all the characteristics and properties intrinsic to
the definition of a well-formed XML document. If the same notation is used in exactly the same
way for all three file the there will be one and only one XML data type.

An XML data type will be shown to conform to an XST definition of ‘nested Xsets of n-tuples’.

5.2. XML Document Representation. The syntax of an XML document is deceptively simple.
There are only three basic components: elements, tags, and attributes.

Every XML document is of the form:

<root>
<tag; >Elem, < /tag; >
<tag, >Elem; < /tags; >

<tag, >Elem, < /tag, >
< /root>

Where each Elem; can be of the form:

<Elem; >
<tag; >elem; < /tag; >
<tag, >elem, < /tag: >

<tag, >elem, < /tag,, >
< /Elem; >

Giving an XML document the ability to have an arbitrary depth of nested collections of tagged
elements.

<root>

<tag; >
<Elem; >
<tagy >elem; < /tagq >
<tag, >elems < /tags >

<tag,, >elem,, </tag,, >
< /Elem; >
< /tag; >

<tag, >Elem, < /tag. >

<tag, >Elem, < /tag,, >
< /root>

The key to the richness of XML structures is in this nesting of collections of tagged elements. These
collections can be ‘ordered’ or ‘unordered’ and each with an arbitrary, but finite, depth.

The ‘unordered’ or ‘ordered’ issue is not universally agreed upon just yet. For example:

<A> <A>
aaa< /B> <C>cce</C>
<C>bbb</C> <C>bbb</C>
<C>cce</C> aaa< /B>

the two XML documents above may or may not be considered to be the ‘same’. They are certainly
informationally equivalent as far as the content within the tags is concerned, but the relationship
of the tagged elements, within the A tag, is not preserved. Ideally, it would be nice to have a formal
notation that would be able to express these distinctions in terms of their mathematical identities..

5.3. Mathematical Identity. The mathematical identity of any object is just a formal expression
that captures everything that is ‘meaningful’ about the content and structure of the object. For
modeling data processing systems, the mathematical notation used must be rich enough to capture
the mathematical identity of data. The current candidate for this task is XST.

This means that for any data representation, like an XML document or a RDM table, there exists an
XST expression of the data representation that preserves everything ‘meaningful’ about the content
and structure of the data representation. Qur current objective is to capture the mathematical
identity of XML documents, then mathematical identity of RDM tables and relations.

As was mentioned earlier, every XML document must be well-formed. That means that every XML
document must conform to the notational and structural rules for constructing XML documents.
The examples above reflect these rules. The question now becomes: “Can these notational and
structural rules be transformed to a formal mathematical discipline?” If so, then the mathematical
identity of an XML document will have been captured.

The concept of well-formed comes from mathematics. Even though well-defined mathematical
symbols are used in an expressing, that expression may not be well-formed. None of the following
expressions are well-formed:

1) 7+9+3 4) A+ V4

2) *8(/+=5<T 5) <a,b>N<a,z>

3) {2,-2}4+1{2,-2} 6) <a,be>N<a,x>

Some of the above are not well-formed because the notation is ambiguous and some are not well-
formed because the structure does not reflect sound mathematical behavior.

In case (1) the mathematical identity of the expression is either 48 or 34 depending on the order in
which the operations are executed. The ad hoc committee way to solve the problem is to establish
rules of precedence that establish one operation as having to be executed before another. The
proper mathematical resolution is the use of parentheses giving either (74 9)*3 or 7+ (9 * 3).

In case (2) any possibly intended mathematical identity is a complete mystery.

Case (3) and (4) are equivalent transformations of each other and therefore represent the same
mathematical identity. Though case (4) is the more familiar expression and easier to resolve by ad
hoc intervention, case (3) shows that case (4) does not have an obvious mathematical resolution.
Standard practice is to ignore the original expression of case (4) and change it to one that can
be resolved like: |[v/4| 4 |v/4]. This, of course, now gives the modified case (4) a totally different
mathematical identity than that of case (3).

Case (5) and (6) both have a well-defined mathematical identities, < a,a > and @ respectively.
Both of which are mathematically useless, therefore one never sees set-operations defined between n-
tuples, even though n-tuples are well-defined sets. This ‘non-well-formedness’ of n-tuples is germane
to resolving the mathematical identities of XML documents and will be discussed further.

8

5.4. XML Documents & n-tuples. Since the last section just denigrated the well-formedness
of n-tuples, it would not seem to follow that n-tuples be used to capture the mathematical identity
of XML documents. Yet that is what we are about to do.

N-tuples are known to be ‘notationally nice and mathematically mean’. We will take advantage of
the ‘nice’ part and tame the ‘mean’ part later.

The ‘nice’ part allows us to take a tagged element expression like: <C>ccc</C>
and transform it to an n-tuple notation by: < (', cece >.

A list of tagged element expression like: aaa< /B>
<C>bbb</C>
<C>cecc</C>

Could be represented either as a set of n-tuples like: { < B, aaa >, < C, bbb >, < C, ccc >}
or as an n-tuple of n-tuples like: < < B, aaa >, < C, bbb >, < C, ccc > >.

Though this last use of the n-tuple notation is mathematically ‘mean’, it does allow a notational
distinction between the previous list and the following list of tagged element expressions:
<C>cecc</C>
<C>bbb</C>
aaa< /B>

as expressed by an n-tuple of n-tuples like: < < C, cce >, < C, bbb >, < B, aca > >.

It is not a big leap of faith that allows: <A>
aaa< /B>
<C>bbb</C>
<C>cecc</C>

to be transformed into either: <A>
{ < B, aca >, < C, bbb >, < C, ccc >}

or into: <A>
< < B, aca >, < C, bbb >, < C, ccc > >.

The original XML document can now be expressed in two different ways:
as: < A, {< B, aaca >, < C, bbb >, < C, ccc >} >
or as: < A, <€ < B, aaa >, < C, bbb >, < C, cce > > >

It might seem from the above expression that the mathematical identity of an XML document had
been captured. Especially since there exists a well-defined transformation from the above notation
back to the original XML document expression, which was well-formed to start with.

Notational isomorphism does not insure the capturing of mathematical identity. Each notation
has to be well-formed in its host context. N-tuples are not unambiguously defined in classical set
theory, therefore the expression in the context of classical set theory, is not well-formed.

If the n-tuple notation is used in the context of a notational ‘short hand’, then the expression
is well-formed, but no mathematical identity has been captured since there is no mathematical
context. It gets worse.

The last formulation is an expression of ‘nested n-tuples’, or ‘n-tuples inside of n-tuples’. In set-
theoretic parlance this means ‘an n-tuple is a member of another n-tuple’. ‘Membership’ is what
set theory is all about. The problem is that the membership condition for n-tuples is not all that
well defined in Classical set theory, CST.

5.5. A Taste of Set Theory. This paper is not intended as treatise on set theory, but if previous
attacks on the virility of Classical set theory are not substantiated and subsequently resolved,
there will be no support for considering an extended set theory for capturing the mathematical
identity of XML documents. The supporting arguments for n-tuple membership ambiguity and the
extensions to CST provided by Extended Set Theory, XST, can be found in [CHO00]. (The necessary
formulations required for this paper can be found in the appendix).

Briefly, when attempting to model data and operations on data in a formal way, the CST concept
of n-tuple is generally used to formally support the concept of a record and operations on records.
Unfortunately, the CST definition of an n-tuple does not allow it to behave in a meaningful way
when operated on by legitimate set operations. This makes formal models of record processing
systems, based on the CST n-tuple, either very limited or ‘mathematically unsound’, or both.

5.6. XSN: Extended Set Notation. Extended Set Notation (XSN) denotes the extended mem-
bership concept of XST by using the construct of ‘exponent’ to signify the ‘scope’ component of
membership. An extended set is referred to as an Xset to distinguish its extended membership
condition from the CST set membership. An Xset can be thought of as a regular classical set of
elements, except that the elements also have ‘exponents’. For example: A = {z,y,z} is a classical
set, while B = {24, 2%, y1®" 25} is an Xset. These ‘exponents’ are called scopes.

It is important to notice that XST subsumes CST. Any CST set can be immediately ‘converted’
to a Xset just by giving every element a scope of @. Thus the classical set A = {z,{y},{{z}}}
becomes the Xset A = {22, {y?}?,{{z9}?9}9}.

Not only does XSN preserve all non-ambiguous set-theoretic definitions from CST, but it also
provides a resolution to the n-tuple definition, giving: < 2y, @9, ..., x, > = { zl, 23,..., 27 }.
The following, though possibly bizarre, are legitimate set expressions using XSN:

{{a{b{cd}}}, {{Az,{By,{Cf,D“’}”}“}f}, {< a, < b > {e,d} >V <<e >>{{f8}Q}}.

In viewing the above, it may help to remember that a formal modeling notation, of and by itself, is
intrinsically meaningless. The notation is purely a syntactical framework for defining consistency
of operations on well-defined objects. Any ‘meaningful’ situation modeled by XSN will enjoy this
behavioral consistency, but not because of any inherent ‘meaningfulness’ in the definitions.

5.7. XML Documents As Xsets. In the context of XST, the following expressions are now
well-formed:

The set of n-tuples: { < B, aaa >, < C, bbb >, < C, ccc >}
An n-tuple of n-tuples: < < B, aaa >, < C, bbb >, < C, ccc > >.

The XSN expressions of the above as Xsets are: { { B, aaa® }, { C*, bbb* }, { C*, cec® } }
and: { { BY, aaa® }', { C*, bbb* }*, { C*, cec® }3 }
The original XML document can now be expressed as two different Xsets:

as: { A {{BY ana® }, { CF bbb}, { O, cee® } 37}

or as: { A {{BY ana® }, { O 0007 32, { OV cec? 1337}

and even as: { A, L { Y ocec? FY { O bbb 2, { BY, aaad® 3P} }

Which one, if any, captures the mathematical identity of the original XML document? The last
two reflect an ordering distinction on the elements as presented earlier.

10

These are not the only choices. In the context of XST, a possibly more representative reflection of
the mathematical identity of an XML document can be achieved by equating tags with scopes, as

in: { { aad®, bbbC, ccc® 1A } or by: { { aaa<H B> bob<3C> cec<BC> J<LA> }

5.8. RDM Tables & Relations As Xsets. All the details of capturing the mathematical iden-
tity of XML structures have not established yet. But, since part of our goal is to be able to mix
RDM data and XML data together in the same process, it may be a good time to introduce the
mathematical identity of RDM tables and relations.

Again, since the mathematical identity of any object is just a formal expression that captures
everything that is ‘meaningful’ about the content and structure of the object, all that needs to be
done is to show that XSN is rich enough to capture everything we need to know about RDM tables
and relations. Below are twelve RDM tables:

A B C A B C A C B A C B B A C B A C
al|b|c rly|z a|c b‘ xzy‘ ‘b a|c ‘yxz
T, = Ty = T3 = Ty = Ty = Te =
rly|z al|b|c xzy‘ al|c b‘ ‘yxz ‘b al|c
B C A B C A ¢ A B ¢ A B ¢ B A ¢ B A
‘b cla ‘yzx’ cla b‘ ny‘ clbla zly|@
T7 = Ts = Ty = Tio = T = T2 =
‘yzx’ ‘b cla zxy‘ cla b‘ zly | @ clb|a

All twelve of the above are distinct RDM-tables that represent the same unique RDM-relation.
Therefore, we need to define twelve tables, one relation, and one transformation that takes any one
of the twelve tables into the same relation. Doing this will also provide some experience before
tackling the more complex transformations of XML structures.

For modeling any item both the content and the structure of the item has to be captured by the
mathematical identity. The modeling strategy using Xsets in the following is to let the content be
represented by elements and the structure be captured by the scopes. Let T, and T, be defined
as follows:

A B C
al|b|c
_ _ <1,A> p1<2,B> ,<3,C>1 <1,A> , <2 B> _<3,C>12
T = Tl - {{a 7b € }7{$ Y s & } }

|y |z

C B A

zly @

= _ <1,C> ,,<2,B> ,.<3,A>1 <1,C> p<2,B> ,<3,A>12
Tiz b T12 - {{Z > Y s }7{C 7b , @ } }
c a

T, and T, both represent RDM tables as 2 by 3 matrices with rows being represented as Xsets
whose scopes represent the order of the row in the matrix. The elements with in the row-Xset
represent the content of the matrix, with their scopes representing their column position along with
the RDM domain name associated with the column.

T, and T, are just two RDM tables out of twelve. The mathematical identity of all twelve need
to show common content and separate structure. Any one of the twelve can be represented by the
following definition:

Definition 5.1. RDM Table:
RdmT(i,j, k. I,J) = { {q<0A> p<IB> (RO (< A> <GB <k C> Y }

11

Given this definition, T, = RdmT(1,2,3,1,2) and T, = RdmT(3,2,1,2,1). All the others
have equally obvious substitutions. This establishes a unique mathematical identity for the twelve
distinct RDM tables. The mathematical identity of the common underlying RDM relation can be

expressed by: R = { {a<0A> p<OB> (<0050 [p<0,4> <0B> <0,0>10 }7
which can easily be transformed into R/ = {{ZC,yB,xA}, {aA,cC,bB}}.

All twelve RDM tables and the underlying RDM relation now have Xset representations of their
mathematical identities. All that is left is to define a transformation from tables to the unique
underlying relation. These are not general definitions, but are specific to this example.

Definition 5.2. Table to Relation: TR(Rme(i, Jok 1, J)) = RdmT(0,0,0,0,0)

This formally asserts that distinct, but informationally equivalent RDM-tables can be mathemati-
cally transformed into their underlying unique RDM-relation. This is an example of using extended
set notation to capture both the representation and content of data. The question now is whether
or not the same can be done for XML documents.

5.9. Tags As Scope Sets. As was mentioned earlier, there is a third component: atiributes.
The syntax of an XML document allows properties of the elements to be expressed in terms of
attributes, but the attributes themselves actually appear as a component of the tags.

Attributes in the XML sense are not the same as attributes in the RDM sense. Tags are closer to
playing the role of RDM-attributes while XML-attributes are more akin to ‘properties’ of elements.

The XML structure on the right is stylized from [Ma00]: <p>

<N L="f">EL1</N>
<R C="u">EL2</R>

As an Xset, it might be expressed as: <A F=txt LeTEUS

<S>EL3</S><Z>EL4</Z>
{ <I>EL5</I><Y>EL6</Y>

{ (ELI<INASL5) S </P>
{BL2)<ARAC W)
{
{EL3}<15>
{EL4}<L2>
{EL5}<MI>
{EL6}<hY>
}<3,A,{<F, “CL‘”>,<L,“f”>}>
y<LP>
}
Notice that the XML-attributes within a tag form an unordered set. Therefore the following two
sets are ldentlcal: { { X}<3,A,{<F,“l‘”>, <L,“f”>}>} _ { { X}<37A7{<L,“f”>, <F,“CL‘”>}>}‘

Though this previous demonstration is not conclusive evidence that every XML structure has at
least one Xset representation that captures its mathematical identity, it can be shown that such
is indeed the case. The important issue there is that if no XML structure could be faithfully
represented as a mathematical operand, then no mathematical operations could be defined for
processing any XML structure. Thus, there would be no mathematical basis for supporting the
processing of data, which was the whole justification for introducing XSP technology in the first
place.

Now that the mathematical identity of data has been demonstrated (at least in part), how does that
help with improving information sharing, distributed data access, and overall system performance
control in a combined XML and RDM environment?

12

6. FORMAL MODELING

So far, it has been demonstrated that XML documents can be formally modeled as XML-Xsets,
but it has not yet been shown that any operations on XML-Xsets can be formally modeled. The
most immediate issue is to determine if any operations can be found that work on XML-Xsets as
they exist in the V environment. This is equivalent to finding an example of an A, B and f from the
VPS schema. If that fails, the paper ends. If successful, then two issues arise. Do f-operations exist
that allow the mixing of RDM-Xsets and XML-Xsets? Do g-operations exist with images in the
P environment that preserve the mathematical identities of Xsets in the V environment? Natural
candidates for f-operations in the V environment would be those of the RDM Relational Algebra.
No obvious candidates exist for g-operations that map from V to P.

The Relational Algebra of the RDM, along with some secular operations, certainly provides all the
necessary functionality required for processing RDM relations, but do Relational Algebra opera-
tions work on XML-Xsets? Answer: not really. In fact, Relational Algebra operations do not even
work well on RDM defined relations and tables, for the RDM model (as much as it is mathemat-
ically revered) does not provide a mathematically sound foundation for relations, tables, and the
Relational Algebra. (This is counter to popular belief and will be shown in detail later.)

Not only do operations have to be defined for XML-Xsets, but now RDM-Xsets have to be given
a mathematically sound definition, then the Relational Algebra has to be extended and made
mathematically sound also. This RDM revamping will come later. The issue at hand is still to
establish an example that f-operations exist in the V environment.

6.1. Modeling XML & RDM Operands. Unlike RDM tables which, to users, are structureless
(rows and columns have no fixed horizontal nor vertical orientation), XML documents are highly
structured combinations of ‘order’ and ‘nesting’. In one case the Xset surrogate must preserve
the lack of structure, and in the other case must preserve a high degree of structure. Both cases
are challenging for a formal modeling, since the most likely candidate, classical set theory, fails
miserably.

The formal underpinnings of the RDM rely on the set theoretic concept of n-tuple. These n-
tuples are very fragile constructs. They can be manipulated as a whole, but they mathematically
disintegrate when operated on. The RDM relies on operations on n-tuples.

So far, researchers have had sense enough not to try to formally model XML documents and
operations on these documents. Graph theory is considered adequate, since all XMI documents
can be spread out as tree structures and elements can be accessed by chasing up and down branches.
Though these structures have a different mathematical identity that the original XML documents,
they have the advantage of capturing the XML data so that it can be implemented and processed
in a machine environment. Unfortunately, this approach does not produce either the f-operations
nor the g-operations that are required for supporting strong data independence.

The converse is not true. A formal modeling that supports strong data independence could have a
g-operation that takes arbitrary XML documents and produces the friendly tree structure as a C;
in the P environment. This would allow branch scrambling when desirable, but would also allow
morphing the trees into other forms that had better mechanisms for data processing.

Though ‘mathematical identity’ has been presented as the intrinsic essence of XSP technology,
very little mathematics has been employed up until now to support any functional modeling or
data independence claims. That is about to change.

6.2. XML-Xset Query Operations. [t has been previously argued that, before proceeding
much further, at least one example of an A, f, and B (from the VPS schema) is required, where A
and B are XML-Xsets. There is little value in an example where A and B are RDM-Xsets, since

13

those are basic to the RDM. Now, when it comes to an example of A, ¢, and C; with A as an
RDM-Xset, the RDM is of no value and the problem becomes quite interesting.

Two XML-Xsets are required for our pivotal example. Since the W3C committee is the recognized
authority for guiding XML standardization, the following example is taken from the W3C XML
QUERY REQUIREMENTS Working Draft 15 August 2000: Use Cases for XML Queries, B.1.2
(see Appendix B).

A={
{
{ .
{ TCP/IP }<LTitle>
{ {Steven5}<1,Last>’ {W.}§2,First> }<2,Autho7‘>’
{ Addison-Wesley }y<3Fublisher>.
{ 69.95}<4,Price>
}<1,BOOk,{<year,“1994”>}>
{ .
{ UNITX }<1,thle>’
{ {Stevens}<hLast> {W.}§2,First> }<2Author>
{ Addison-Wesley }<3Publisher>
{ 69.95}<4,Price>
}<2,BOOk,{<year,“1992”>}>
{ .
{ Data on the Web }<tTitle>
{ {Abzteboul}<1 Last> {Serge}<2 First> }<2 Author>
{ {Buneman}<b Last> , {Peter}<?First> 1<3, AU”LOD
{ {SUCZU}<1 Last> {Dan}<2 JFirst> }<4 JAuthor >
{ Morgan K aufmann Publishers }<> P“b’”heb’
{ 39.95}<6,Price>
}<3,BOOk,{<year,“2000”>}>’
{
{ Digital TV }y<LTitle> B ¢
{Gerbarg}<tlast> { {
{Darcy}<32j”5;>t {TCP/IP }<bTitle>
{CITT}<3 A7 fiiation>, }<1,Book,{<year,“1994”>}>
}<2 JEditor> ,
{ Kluwer Academic Publishers }<3Publisher> { '
{ 129.95}<4,Pric€> { UNIX }<1,thle>’
}<4,Book,{<year7ﬁ1999”>}> }<2yBOOk,{<y€a7‘7“1992”>}>’
}<1,Bz’b> y<LBib>
} }

In this example the above set A is the body on an XML document and B is the result of exercising
the following query on A: List all books published by Addison Wesley after 1991, including their year and title.

This query is the f that has to be expressed strictly in terms of a set-theoretic expression that
‘generates’ the elements of B from the elements of A.

The real expressive power of XML comes from complex nested structurings of elements, tags,
and attributes. These are the essential ‘handles’ for supporting the querying of XML documents.
Though A is a very simple structure, it is not very amenable to being processed by classical set
operations for several reasons. The most obvious being that CST has no way to deal directly with
tags and attributes, since the only construct in CST is elements. ‘Directly’ is a key word here since a
convoluted use of elements could reflect a relationship between XML elements, tags, and attributes.

14

This, however, would not be a faithful representation of the mathematical identity of the XML
document.

Showing why CST does not work, does not enhance any argument for supporting that XSP does
work, but it does reenforce the need for XSP operations to accommodate tags, and attributes. This
means, for most readers, that an already arcane notation is about to become ‘arcaner’. Following
is an XST expression of membership for: f(A) = B.

Definition 6.1. W3C Query B.1.2:
f(A) = { y<hEP (32)(z e 1, Bib JNER(A {Addison-Wesley}oisher) &
y = NSR(NSR(z,{Book,Title}), {< year,“z” >: 1991 < 2 <2010}) }

The validity of the above definition for f is probably not immediately obvious to all readers, nor
is that really relevant. The important issue here is not the ‘why’ of its validity, but the ‘fact’ of its
validity. (This paper is not intended as a tutorial on XST, but for the insatiably curious, with lots
of time on their hands, the ‘why’ is explained in the appendix.)

Assuming that the above definition is indeed valid, it has been shown that a purely mathematical
modeling exists that transforms one XML document into another. This all happens in the V
environment. Just as all RDM modeling also resides in the V environment. The next step is to
show that a g-operation exists that takes A into the P environment.

6.3. XML-Xset Xenomorphic Operations. Operations that take conceptual Xsets into phys-
ical Xsets behave like most mathematical morphisims in that they preserve the ‘operational” struc-
ture of the V space, but they generally do not preserve the representational structure. The very
nature of the P and § environments preclude most direct images. Just the simple mapping of
the integer 10 maps to < a, A > where a is the address of a location containing the hexadecimal
representation of 10. So a ‘true’ preservation of 10 + 11 would map to < ¢, A > + < b, B >. The
operation ‘4, in this context, does not make a whole lot of mathematical sense.

Neither A nor B fit very nicely into a physical storage environment. The usual approach of changing
them both to tree structures, and then mapping the tree structure results into physical storage, is
a typical programming approach to the problem, but it is not a valid mathematical approach. A
mathematical solution has to be of the form: g(z) = y.

Three xenomorphic g-operations will be presented for mapping A from the V space to the P space.
But first, some target representation type needs to be established for the P space. The simplest and
most ubiquitous candidate is the character string. In order to use the character string representation
for Xsets, two notational conversions need to be defined that take character string expressions of
membership expressions to membership expressions of character string expressions, and visa versa.
These are they:

Definition 6.2. Character String Expression of Membership Expression:
Cseme({a¥ }) = {x[yl}.

Definition 6.3. Membership Expression of Character String Expression:
Mecse({xIyl}) = {av).

For example:

For Q = { a<tA> {p<tB> }<2> 10 Cseme(Q) = { al<t,8>], { bl<1,B>] }[<2,0>]1 }.

As with any character string, a convention needs to be established regarding the treatment of
‘blanks’, choice of ASCII or EBCDIC, choice LF and CR or just LF, choice of delimiters, and other
representation particulars that do not impact the content of the character string.

15

Clearly, given these notational transformations, the most straight forward g-operation (isomorphic
in this case) is Cseme. Let g; = Cseme, then C; = Cseme(A) plops the XML-Xset A from the V
space to Cy in the P space, giving:
Cseme(A) = { {{{TCP/IP}[<1,Title>],
{{Stevens}[<1,Last>], {W.}[<2,First>]}[<2,Author>],
{Addison—Wesley}[<3,Publisher>],
{69.95}[<4,Price>]
}[<1,Book, {<year, ¢ ‘1994">}>],
{{ unix}[<1,Title>],
{{Stevens}[<1,Last>], {W.}[<2,First>]}[<2,Author>],
{Addison—Wesley}[<3,Publisher>],
{69.95}[<4,Price>]
}[<2,Book, {<year, ¢ “1992">}>],
{{Data on the Web}[<1,Title>],
{{Abiteboul}[<1,Last>], {Serge}[<2,First>]}[<2,Author>],
{{Buneman}[<1,Last>], {Peter}[<2,First>]}[<3,Author>],
{{Suciu}[<1,Last>], {Dan}[<2,First>]}[<4,Author>],
{Morgan Kaufmann Publishers}[<5,Publisher>],
{39.95}[<6,Price>]
}[<3,Book, {<year, ¢ ‘2000">}>],
{{Digital TV}[<1,Title>],
{{Gerbarg}[<1,Last>],
{Darcy}[<2,First>],
{CITI}[<3,Affiliation>],
}[<2,Editor>],
{Kluwer Academic Publishers}[<3,Publisher>],
{129.95}[<4,Price>]
} [<4,Book, {<year, ¢ “1999">}>]
}[<1,Bib>]

1

Though the above is really just one long character string, it has been presented indented for
readability.

The XML-Xset B also has a character string equivalent, D,. If 7, = Mecse, then B = Mecse(D,).
Using the Xop definition for f(A), presented earlier, as a guide for defining an equivalent algorithm,
hy, then: For all x in A, r1(h1(g1(a))) = f(x). Which demonstrates an implementation instance
of f(A) = B. This, however, may not be an overall ideal implementation. Thought the physical Xset
representations in P and § are conceptually clean, the algorithm for £y, may not be very efficient
and even if it were, it is certainly not very general.

A more desirable implementation would be one that had a ‘flater’ physical representation for phys-
ical Xsets, so that a more general family of h; operations could be implemented. This then requires
more complicated ¢; and r; operations that can transform arbitrarily complex XML-Xsets in the
V space to and from non-nested Xsets in the P space. One such g operation is represented by the
following;:

Let Q = {a®, {07, 0"}, {{d”, wP}7}" }.
Define g(Q) such that g(Q) — { a<A>, b<C,B>7 w<C,D>7 d<F,E,D>7 w<HED> }

This xenomorphic operation took the nested Xset Q and converted it to a non-nested Xset with
every element being atomic and with new scope components preserving the ‘nested’ information.
No nesting information was lost since the operation is reversible. This was a pretty simple case,
that could be done by hand. What is required is a set-theoretic operation that will perform this
‘de-nesting’ for any possible XML-Xset. Here is that operation:

16

Definition 6.4. Element Expansion

a(Q) = {y: tup(z) & Fu)wie, Q) & Guy)((1< <#())
(w6 i) & (5= #0) — Fes)adm) & =w)))

Again, this definition is presented as a testament to its existence and not to its self-explanatory
nature. The underlying concept is simpler than the notation belies. Let ¢2(Q) = Cseme(Ex(Q)),
then
2(A) = {
{Abiteboul}<<1vBib>v<3yBOOk7{<y€M, “2000”>}>,<2,Author>,<1,Last>>7
{Addison-Wesley}<<1Biv><1,Book {<year, 194" >}> <3, Publisher>>
{Addi80n_wesley}<<1,Bib>,<2,Book,{<yea7‘, “1992”>}>,<3,Publisher>>7
{Buneman}<<1,Bib>,<3,Book,{<year, “2000” >}>,<3,Autho7‘>,<1,Last>>7
{CITI}<<1,Bz’b>,<4,Book,{<year, “1999”>}>,<Z,Editor>,<3,Affz’lz'an'on>>7
{Dan}<<1,Bib>,<3,Book,{<year,“2000” >}>,<4,Author>,<2,Fz’rst>>7
{Darcy}[<<1,Bib>,<4,Book,{<year, “1999”>}>,<2,Editor>,<2,Fz’rst>>7
{DataontheW@b}<<1 ,Bib> <3,Book {<year,“2000” >}> <1, Tz'tle>>7
{DigitalTV }<<LBib> <4 Book {<year, “1999">) > <1 Title>>
{Gerbarg}<<1 ,Bib> ,<4,Book {<year,“1999” > 1> <2 Editor>,<1, Last>>

{]X luwerAcademlcPubllshers}<<1 ,Bib> <4,Book {<year, “1999 >}> <3, Publzsher>>
s <<1,Bib>,<3,Book,{<year,“2000”>}> <5, Publzsher>>

{Morgan K aufmannPublishers}
{Peter}<<1,Bib>,<3,Book,{<year, 420007 >} >,<3,Author>,<2,First>>

?
{Serge}<<1,Bib>,<3,Book,{<year,“2000”>}>,<2,Author>,<2,First>>
?
{Stevens}<<1,Bz’b>,<1,Book,{<yem«,“1994”>}>,<2,Author>,<1,Last>>7
{Stevens}<<1,Bz’b>,<2,Book,{<yem«,“1992”>}>,<2,Author>,<1,Last>>7
{Suciu}<<1,Bib>,<3,Book,{<year,“2000”>}>,<4,Author>,<1,Last>>
?
<<1,Bib>,<1,Book {<year,“1994” > 1> <1, Title>>
{TrCP/IP} ,
{UNIX}<<1,Bz’b>,<2,Book,{<year,“1992”>}>,<1,Tz’tle>>
?
<<1,Bib>,<1,Book {<year,“1994” >1> <2 Author> <2, First>>
{W} n<year, <2, <2,
* ?
<<1,Bib> <2 Book {<year, “19927 > 1> <2 Author> <2, First>>
{W}) <2, n<year, <2, <2,
* ?
<<1,Bib>,<3,Book {<year,“2000” >1}> <6 Price>>
{39.95} i y 4 ,
<<1,Bib>, <1, Book {<year,“1994” >1> <4 Price>>
{69.95} { y 4 ,
<<1,Bib>,<2,Book {<year,“1992” >1> <4 Price>>
{69.95} y 4 ,
{129 95}<<1,Bz’b>,<4,Book,{<year,“1999”>}>,<4,Pm’ce>>

J

g92(A) =A{
{Abiteboul}[< <1,Bib>, <3,Book,{<year,‘¢2000">}>, <2,Author>, <1,Last> >I,
{Addison—Wesley}[< <1,Bib>, <1,Book,{<year,1994">}>, <3,Publisher> >],
{Addison—Wesley}[< <1,Bib>, <2,Book,{<year,‘1992">}>, <3,Publisher> >],
{Buneman} [< <1,Bib>, <3,Book,{<year,‘¢2000">}>, <3,Author>, <1,Last> >],
{CITI}[< <1,Bib>, <4,Book,{<year, ¢1999">}>, <2,Editor>, <3,Affiliation> >],
{Dan}[< <1,Bib>, <3,Book,{<year, ‘2000">}>, <4,Author>, <2,First> >],
{Darcy}[< <1,Bib>, <4,Book,{<year, €1999">}>, <2,Editor>, <2,First> >],
{Data on the Web}[< <1,Bib>, <3,Book,{<year,2000">}>, <1,Title> >],
{Digital TV}[< <1,Bib>, <4,Book,{<year,‘1999">}>, <1,Title> >],
{Gerbarg}[< <1,Bib>, <4,Book,{<year,‘¢1999">}>, <2,Editor>, <1,Last> >],
{Kluwer Academic Publishers} [< <1,Bib>, <4,Book, {<year, € 1999">}>, <3,Publisher> >],
{Morgan Kaufmann Publishers} [< «<1,Bib>, <3,Book, {<year, ¢ ‘2000">}>, <5,Publisher> >],
{Peter}[< <1,Bib>, <3,Book, {<year,‘¢2000">}>, <3,Author>, <2,First> >],
{Serge} [< <1,Bib>, <3,Book, {<year, ‘2000">}>, <2,Author>, <2,First> >],
{Stevens}[< <1,Bib>, <1,Book,{<year,‘¢1994">}>, <2,Author>, <1,Last> >],
{Stevens}[< <1,Bib>, <2,Book,{<year,‘¢1992">}>, <2,Author>, <1,Last> >],

17

{Suciu}[< <1,Bib>, <3,Book,{<year,‘¢2000">}>, <4,Author>, <1,Last> >],
{TCP/IP}[< <1,Bib>, <1,Book,{<year,‘<1994">}>, <1,Title> >],

{UNIX}[< <1,Bib>, <2,Book,{<year,‘<1992">}>, <1,Title> >,

{W.}[< <1,Bib>, <1,Book,{<year,¢1994">}>, <2,Author>, <2,First> >],
{W.}[< <1,Bib>, <2,Book,{<year,¢1992">}>, <2,Author>, <2,First> >],
{39.95} [« <1,Bib>, <3,Book, {<year, ‘¢2000">}>, <6,Price> >],

{69.95} [< <1,Bib>, <1,Book,{<year,¢1994">}>, <4,Price> >],

{69.95} [< <1,Bib>, <2,Book, {<year,‘¢1992">}>, <4,Price> >],
{129.95} [< <1,Bib>, <4,Book,{<year,‘<1999">}>, <4,Price> >]

For g, representation choices were made to support variable length records, as depicted above.
Thus the operation ¢,(A) gives C, in the P environment. Thus, Cs is just a file of variable length,
ASCII records that contains all the ‘structure’ and ‘content’ information of Xset A from the V
environment.

Notice that C; could be derived from C;, and conversely, C; could be derived from C,. The process
from C; to Ais well-defined, since g; is reversible. Therefore, g5 is reversible, thus r, exists if D, is
the same type as Cy. This just leaves the construction of hy to complete the second implementation

of f(A) = B.

haa(C2) = {
{Addison—Wesley}[< <1,Bib>, <1,Book,{<year,1994">}>, <3,Publisher> >],
{Addison—Wesley}[< <1,Bib>, <2,Book,{<year,‘1992">}>, <3,Publisher> >],
{Stevens}[< <1,Bib>, <1,Book,{<year,‘¢1994">}>, <2,Author>, <1,Last> >],
{Stevens}[< <1,Bib>, <2,Book,{<year,‘¢1992">}>, <2,Author>, <1,Last> >],
{TCP/IP}[< <1,Bib>, <1,Book,{<year,‘<1994">}>, <1,Title> >],
{UNIX}[< <1,Bib>, <2,Book,{<year,‘<1992">}>, <1,Title> >,
{W.}[< <1,Bib>, <1,Book,{<year, €1994">}>, <2,Author>, <2,First> >],
{W.}[< <1,Bib>, <2,Book,{<year,¢1992">}>, <2,Author>, <2,First> >],
{69.95} [< <1,Bib>, <1,Book,{<year,¢1994">}>, <4,Price> >],
{69.95} [< <1,Bib>, <2,Book, {<year,‘€1992">}>, <4,Price> >]

}

ha(C2) = {
{TCP/IP}[< <1,Bib>, <1,Book,{<year,‘<1994">}>, <1,Title> >],
{UNIX}[< <1,Bib>, <2,Book,{<year,‘<1992">}>, <1,Title> >,

}

Looking at the two results above, it can be seen that hs, has been broken up into two parts.
The first result is derived by checking that the ‘element field’ is equal to ‘Addison—Wesley’,
and that the ‘scope field” contained ‘Publisher’, and that the ‘scope field’ containing ‘year’ had
a value greater than 1991. These conditions are true only for elements with scopes containing
‘<1,Book,{<year,“1994”>} >’ and ‘<2,Book,{<year,“1992” >} >’ Therefore the first result is the
subset of C, that has elements with scopes matching these conditions.

The second result is a subset of the first result containing only elements with scopes containing
‘Title’.

Clearly, hs is more general in nature than was hy. In fact by is almost a RDM operation except that
neither Cy nor the result Dy satisfy conditions for RDM operands, embedded in a P space. Such
conditions would include some mechanism for associating ‘Domain Names’ with ‘columns’. Neither
of which are even defined for C5 or D;. This suggests possibilities for a third implementation of

f(A) = B.
Two approaches exist for making hs more RDM oriented: extend the operations of the Relational
Algebra to be well behaved on operands of type Cs, or define g3 and r3 to produce and operate on

18

P based Xsets that conform to RDM specifications. (Both these conditions are difficult to achieve
since the RDM only specifies conditions for V environment.) However, if a g-operation produced a
P based Xset that could easily map back to a V based RDM-Xset, then all the RDM conditions of
the V space could be ‘pulled back’ into the P space.

The following Xset, gs,(A), is just a rewriting of ¢,(A) with a judicious use of blanks to create a
representation of a fixed-length record file.

{Abiteboul} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <2,Author>, <1,Last> >]
{Addison$-$Wesley} [< <1,Bib>, <1,Book,{<year, ‘¢1994">}>, <3,Publisher> >]
{Addison$-$Wesley} [< <1,Bib>, <2,Book,{<year, ¢¢1992">}>, <3,Publisher> >]
{Buneman} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <3,Author>, <1,Last> >]
{cITI} [< <1,Bib>, <4,Book,{<year, ¢¢1999">}>, <2,Editor>, <3,Affiliation> >]
{Dan} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <4, Author>, <2,First> >]
{Darcy} [< <1,Bib>, <4,Book,{<year, ¢¢1999">}>, <2,Editor>, <2,First> >]
{Data on the Web} [< <1,Bib>, <3,Book,{<year, <2000">}>, <1,Title> >]
{Digital TV} [< <1,Bib>, <4,Book,{<year, ‘1999">}>, <1,Title> >]
{Gerbarg} [< <1,Bib>, <4,Book,{<year, ¢¢1999">}>, <2,Editor>, <1,Last> >]
{Kluwer Academic Publishers} [< <1,Bib>, <4,Book,{<year, ¢1999">}>, <3,Publisher> >]
{Morgan Kaufmann Publishers} [< <1,Bib>, <3,Book,{<year, ‘2000">}>, <5,Publisher> >]
{Peter} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <3,Author>, <2,First> >]
{Serge} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <2,Author>, <2,First> >]
{Stevens} [< <1,Bib>, <1,Book,{<year, ‘¢1994">}>, <2,Author>, <1,Last> >]
{Stevens} [< <1,Bib>, <2,Book,{<year, ¢¢1992">}>, <2,Author>, <1,Last> >]
{Suciun} [< <1,Bib>, <3,Book,{<year, ¢¢2000">}>, <4, Author>, <1,Last> >]
{TcP/1IP} [< <1,Bib>, <1,Book,{<year,‘‘1994">}>, <1,Title> 5]
{UNTX} [< <1,Bib>, <2,Book,{<year,‘1992">}>, <1,Title> 5]
{w.} [< <1,Bib>, <1,Book,{<year, ‘¢1994">}>, <2,Author>, <2,First> >]
{w.} [< <1,Bib>, <2,Book,{<year, ¢¢1992">}>, <2,Author>, <2,First> >]
{39.95} [< <1,Bib>, <3,Book,{<year, ‘2000">}>, <6,Price> >]
{69.95} [< <1,Bib>, <1,Book,{<year, ‘¢1994">}>, <4,Price> >]
{69.95} [< <1,Bib>, <2,Book,{<year, ‘1992">}>, <4,Price> >]
{129.95} [< <1,Bib>, <4,Book,{<year, ‘1999">}>, <4,Price> >]

By shortening some element names along with other editorial modifications, Xset gs,(A) can be
mapped to a RDM representation in the V environment, giving:

{ELEM}[< <D1>, <D2,D3,D4>, <D5>, <D6> >]
ELEM D1 D2 D3 D4 D5 D6

Abiteboul 1,Bib 3,Book year £€2000" 2 ,Author 1,Last
Add$-$Wes 1,Bib 1,Book year £¢1994" 3,Publis -
Add$-$Wes 1,Bib 2,Book year £¢1992" 3,Publis -

Buneman 1,Bib 3,Book year £€2000" 3,Author 1,Last
CITI 1,Bib 4,Book year ¢¢1999" 2 ,Editor 3,Affn
Dan 1,Bib 3,Book year £€2000" 4, Author 2,First
Darcy 1,Bib 4,Book year £¢1999" 2,Editor 2,First
Data Web 1,Bib 3,Book year £€2000" 1,Title -
Digital 1,Bib 4,Book year £¢1999" 1,Title -
Gerbarg 1,Bib 4,Book year £¢1999" 2,Editor 1,Last
Kluwer 1,Bib 4,Book year £¢1999" 3,Publis -
Morgan 1,Bib 3,Book year £€2000" 5,Publis -
Peter 1,Bib 3,Book year £€2000" 3,Author 2,First
Serge 1,Bib 3,Book year £€2000" 2 ,Author 2,First
Stevens 1,Bib 1,Book year £¢1994" 2 ,Author 1,Last
Stevens 1,Bib 2,Book year f¢1992" 2 ,Author 1,Last
Suciu 1,Bib 3,Book year £€2000" 4, Author 1,Last
TCP/IP 1,Bib 1,Book year £¢1994" 1,Title -
UNIX 1,Bib 2,Book year f¢1992" 1,Title -
W. 1,Bib 1,Book year £¢1994" 2 ,Author 2,First
W. 1,Bib 2,Book year f¢1992" 2 ,Author 2,First
39.95 1,Bib 3,Book year £€2000" 6,Price -
69.95 1,Bib 1,Book year £¢1994" 4 ,Price -
69.95 1,Bib 2,Book year f¢1992" 4 ,Price -
129.95 1,Bib 4,Book year £¢1999" 4 ,Price -

This RDM view in the V space provides all the information about ‘domain names’ and ‘column’
descriptions necessary to construct a gs(A) that maps A to a small family of Xsets in P. This family
of Xsets in P provides all the information necessary to support Relational operations in the P space.
Thus, hz represents a full compliment of RDM operations. This in turn, allows f in the V space to
be any combination of RDM operations.

We have just shown how to support RDM operations on those XML documents that could be

19

modeled by an RDM-Xset. This may prompt some to wonder whether or not all XML documents
can be operated upon by RDM operations. The question is confining, but the answer is clearly
‘ves’, since any XML structure can be ‘flattened’ into a family of Xsets that are amenable to
RDM operations. This, in turn, allows existing SQL ‘frontends’ to process these transformed XML
documents.

RDM operations, as they are currently known, are probably not the ideal collection of operations to
process XML documents. RDM operations are not rich enough to deal with nested Xsets and there
is no way to distinguish ‘elements’ from ‘scopes’, or in XML parlance ‘content’ from ‘structure’.

It should not go unnoticed that modeling exercises in the last section, with the g;, h;, and r;
operations, were also a demonstration of strong data independence at the V/P interface since h;
knew nothing about the existence of A or B and f knew nothing about the existence of C; or D;.

7. CONCLUSION

There were three implementation challenges to be addressed by this paper. Specifically, they were
to show how to provide low-level support to high-level applications for:

1) Processing more than one XML document at a time.

2) Processing distributed XML documents.

3) Processing a mix of XML documents and legacy data together.

This paper introduced XSP technology for using set processing operations to capture and manip-
ulate the mathematical identity of any and all XML documents.

This was achievable because all XML documents have a mathematical identity by definition. 1t is the
well-formedness of XML documents that provides the potential for high-performance distributed
information sharing. It is also the well-formedness of XML documents that provides the greatest
implementation hurdle for traditional data processing technologies.

Switching from ‘structure-centric’ implementation strategies to an ‘operation-centric’ implemen-
tation strategy allows the well-formedness of XML documents to become an asset instead of a
liability.

This paper showed that an ‘operation-centric’ technology could provide implementations with
‘strong data independence’ which is necessary for achieving robust information sharing in a highly
distributed environment.

It was also shown that RDM operations are applicable to XML documents, but are incomplete in
their functional capabilities. Thus a richer calculus is needed in the V space in order to take full
advantage of the information capacity of XML structures.

Work yet needed to be done is to discover what new Xops need to be defined to provide a ‘com-
plete’” operational capability for manipulating both XML-content and XML-structure on highly
distributed platforms. A good start at this would be to find a covering set of Xops that addresses
all the use cases of the W3C XML QUERY REQUIREMENTS referenced in Appendix B.

20

Appendix A. XSETS, RSHIPS, & TUPLES

The following material is provided in the spirit of completeness, but it is not essential for understanding the
intuition underlying the basic ideas of the paper.
A.1l. SET MEMBERSHIP.

In Classical set theory, CST, a set A is defined solely in terms of the TRUTH or FALSITY of some given
unary function on the variable x, T'(x). The predicate T' is an interpretation of the undefined condition
membership of Thus, if we were to define a set A in terms of some T', T'(x) would have to be either true or
false for every choice of x. That is:

If T(x) = TRUE, then x is an element of A, and
If T(x) = FALSE, then x is not an element of A.
These two assertions can be combined as: A = {z:T(z)} <= (Va)(z e A < T'(z)).

Membership 1s an ‘undefined condition’, and just because it may have a reasonable interpretation should
not detract from its ‘undefinedness’. Now let us assume a second undefined condition represented by (but
not defined by) the scope of y. Given a binary truth-functional T'(a,), which is either true or false for all

instances of @ and b, we can extend the definition of sets, from a dependency on just a single condition for
membership, to a dependence on two conditions for membership: element and scope.

A = {2V T(z,y)} <= (Vz,y)(=z €A — I(z,y)).

This constitutes the truth-functional condition for a set in extended set theory, XST, and indicates that A
is a set defined by I' such that: for all # and y, # is an element of A under some scope represented by y if
and only if # and y satisfy the condition T'(x,y).

The notation ‘z eyA’ is equivalent to the expression z is a y-element of set A.
Thus, somewhat simplistically stated, extended set membership extends Classical set membership from a

dependency on just one logical condition to a dependency on two logical conditions. It should also be
noted that Classical set membership is subsumed under extended set membership since every unary truth-

functional T'(x), for a CST set definition, can be re-expressed as a binary truth-functional T'(x, @), for an
XST set definition.

A.2. BASIC XST DEFINITIONS. Instead of assuming the undefined term, € , to be a binary predicate
of the form x € z, as in classical set theories, € is assumed to be a ternary predicate of the form z €, % To

accommodate individuals or atoms, the null set, @, will also be assumed as an undefined term. In extended
set theory the familiar notation of classical set theory may always be preserved since it can be subsumed
under the extended membership predicate by: € A = = €5

In the following definitions, capital letters shall be used only for sets, while lower case letters may take as
their values either sets or individuals.

Definition A.1. Set: Given the null set, @, and the extended membership predicate, ¢, then:
Yisaset — (Ju,s)(« e Y JorY =0.
Definition A.2. Definition Schema for a Set: Y = {z* Ty(z,s) } — (Va,s)(= €Y — Ty (x,s)).
Definition A.3. Membership Convention: zeY < (3s)(x eSY),
Definition A.4. Scope Set: S(A) = {y¥: (Fa)(= eyA)}
Definition A.5. Constituent Set: A = {2 Ay« eyA)}.
Definition A.6. Constituent Scope Set: Sc(A) = {y* (Jz,s)(ze A&y eyS(x))}.
Definition A.7. Set Inversion: A = {y" €,A }.

Definition A.8. Scope Restriction:
Al = 2% v e A & sed }, AT'F = {25 ze A & s¢7).
S S

Definition A.9. Scope Transform: A%#” = {2% (3s)(€A & te p }.

Definition A.10. Constituent Scope Transform: Q<I#> = {zs: (EIJ:)(re Q& 2= Paltae2 @)} .

21

Definition A.11. Scope Functional:
S Q) = Q#0 & (Vx,y,s)(xesQ&yesQ — x:y),

Sr(Q) = $/(Q) & 8(Q).
Definition A.12. Subsets:

A CB «— (Vx,s)(xesA — l‘ESB),

ACB-— ACB& A # B.

Definition A.13. Non-Empty Subsets:
AcB <— O#£AC
AcB < ACB

Definition A.14. Unions & Intersections:
AUB = {xy: xeonra:eyB}, ANB = {l‘yi xeyAandxeyB }

bl

B
£ B£0—A%0.

Definition A.15. Relative Complement: A ~ B = { ¥« eyA &z ¢yB}.

Definition A.16. Symmetric Difference:
A A B:{xy: (xeyA&a:g&’yB)or (J:ey B&J;g&’yA)}.

Definition A.17. Neutralize:
AT = {2 (3y)(xeyz)}.

A.3. EXTENDED SET OPERATIONS.
Definition A.18. Domain: B,(Q) = { x®: (Elz)(z GSQ> & (l‘ =1 +£0)}
Definition A.19. Range: R,(Q)= { y* (Elz)(z eSQ) & (y=z37" 40)}
Definition A.20. Restriction: QHUA = { z* (Ela) (a € A & =z eSQ) & (al’l € »)}
Definition A.21. Image: Q[A]_, .= {ys: (Fa, 2)(a e Ak eSQ) & (all €z — y=2%774 @)}
Example(s) A.1. Let f = { {z% '} {y* 2*} }, then

a) f[[f]]<{aa}y{ab}> = {{xa}’ {ya}}’

b) TETF oo 1oy D e oy = 100 101}
Theorem A.1. Q[A]l_, ., = R.(Q A).

A.4. RSHIPS.

Definition A.22. Rship: An Rship is any set ‘Q’ all of whose elements are sets, but with the single caveat
that the null set does not appear as a scope element in any element of the set ‘Q’. In the following definition:
X (A) means A is a set, not an atomic element.

Rship(Q) <= [X(Q) & 0g8c(Q) & (Va)(zeQ — X(x))] or Q=0.
Theorem A.2. For Rship(F) and Rship(G):
o) (F/G)A], = &, ((F/G)|A),
b) (F/ G)[A], = &, ((F|A)/G),
¢) (F/G)[A], = R-(G|R,(F[|A)),
d) (F/ G)A], = GR.(F|A)],,
¢) (F/,G)[A], = GIF[A],],.

22

A.5. TUPLES & N-TUPLES.
Definition A.23. Natural Numbers: N={1,2,3,4, ...} Positive Natural numbers.

Definition A.24. Natural Numbers (1 ton): N(n) = { ¥ zeN & 2 < n}
Definition A.25. Indexed Set: A set @ is said to be indexed by a set K when:
Q={AT} iex = (34, T)((Vx, Hre,@—@ieK)r=A & s=7)) & (Viek)(de Q)).
This definition holds for any choice of K, but is particularly useful when K = N(n).
Definition A.26. n-ary Union & Intersection:
Uo(Q) = Q, M(Q) = Q,
Ui(Q) = UUy(Q), MQ) = NMN(Q),
U (Q) = UUL(Q), M.41(Q) = NN,(Q), for nin N.
Theorem A.3. Q= J{z]'} ~—= Q={¢]'}icr.

1€1
Definition A.27. Self Indexing Sets: A set) is self indexing <= @ is indexed by S§(Q).
Theorem A.4. A set Q is self indexing < Q = {Q? }ie s

It should be noted that the concept of indexing developed above does not depend on any prior definition
of “function’ nor on any prior definition of ‘< z,y >’. The role usually played by these 1s filled using the
concept of ‘Scope Functional” [A.11] which provides the required utility without constraining the yet to be
defined concepts of ‘function’” and ‘ordered pair’.

Definition A.28. Positive Scope Set:

pos(x) =n < (n>0 & S(x)EN(n) & (Jy enx)) or (n = 0).
Definition A.29. Unique Positive Scope Set:

upos(x) =n <= pos(x)=n & ((Vy,z,i)(y exlzex— y= z)

Definition A.30. Tight Positive Scope Set:
tpos(x)=n <= pos(x)=n & S(x)=N(n).
Definition A.31. n-Tuple: tup(x) =n <= tpos(x) = upos(x) = n.

Definition A.32. Tuple Set:
Tup(Q) =n < Se(Q)=N(n) & (Vo)(s€Q— tup(s) < n).

Definition A.33. Homogeneous Tuple Set:
HTup(Q) =n <= Sc(Q)=N(n) & (Va)(zeQ — tup(z) =n).

Definition A.34. Tuple Notation:
<L, T2, X3, .0 Ty > = {2t Spla) & s e a & S(a) =N(n) }.

Notice that this definition confines tuples to be finite. Though finite is not requisite, it is in keeping with
traditional use and intent of tuples.

Example(s) A.2.

Given a; = {Al, B2 (3}, as = {B3 D? X!'1 and a3z= {A% B3 C° D' X?},
then < a, b, ¢ >,, = {at, b2,)30 = {ad b8 3
and <a, b, c>,,,U<a, d, b>,, =<d, z, b, a, ¢c>,, .

Theorem A.5. For all o such that Sp(«a),

<X1,%2,%3, ., Tn 2o = < Y1,Y2,¥Y3, .-, Yn >a < (VZ)(Z € S(O[) & Ty = yz)
Theorem A.6. < x1,x9,23,..,0, >q — « is a n-tuple.
Definition A.35. Convention: < x1, Z2,..., &, > = < 1, Za2,..., Tn >New = {x}, 2% ... 27 }.

n

Theorem A.7. < &1,%9,%3,.., %y >a = < L1,L2,T3,..,Tp > 7.

23

Theorem A.8. < xy,29,23,..,0, >4 — ((< T, Lo, X3, .., Ly > <“*)*a> = < 21,29,%3,.., Ty >).
Definition A.36. Element Projection: p(z)=y <= yez & (Vz)(ze,2) — y=2).
Theorem A.9. If Q is scope functional, then p,(Q) is defined for all i in S(Q).
Theorem A.10. p,(< #1,29, ..,y >) = ;.
Definition A.37. Concatenation:

x.y = {wh @n)(pos(x) +pos(y) =n>0) & ((we;x)or (Ij)(we;y&i=j+pos(x))}.
Definition A.38. Set Concatenation:

QxR = {zs: (Elx,y)(xesQ&yesR) & (z =z-y # @)}

Though the above operation is defined for any two arbitrary sets, Q and R, the result is only non-empty
when either set contains an element with positive scope sets. The operation is most interesting when both
sets are Tuple sets.

Definition A.39. Scope Hierarchy: Sh(Q) = {Xi: ieN& UJ,_1(Q#0—-X=8U,_,Q)) }
Example(s) A.3.
Given A = {a', {7, w*}3, {v?, {d*}°}° },
then Sh(A) = { {1, 3, 6}', {2, 4, 5}%, {4}*}.

Definition A.40. Convention:
Shi(Q) = X — X c,Sh(Q),

Shi(Q) = 0 — —(3X)(X €,8h(Q)).
Definition A.41. Rank: R(Q) = #(Sh(Q)).
Theorem A.11. R(Q) = ¢ — [J,(Q) = 0.
Definition A.42. Scope Signature:

S(Q) = {y" A)(x €,Q) & [(~¥(x) — y = 0) or (¥(z) — y = SS(»)] }.
Example(s) A.4.

Given A = {ala {bZ’wZ’UZ}S’ {{d4’62af3}5}6 }a

then SS(A) = {0, {0?}3, {{0?0*0*}°}° }.

A.6. NESTED SET OPERATIONS.
Definition A.43. Partial Scope:

PS(S,Q):{W'D; (ser) & ieN & (xeTUi_l(Q))}.
Definition A.44. Nested Scope:

NS(s,Q) = {1‘ ieN & (ze U, (Q)) }
Definition A.45. Nested Element:

NE(z,Q) = {sz; ieN & (ze U1 (Q)) }
Definition A.46. Tag Map:

Tm(A,B) = {< s,r>: (Fo)(x e, Ak z¢ B)}

Definition A.47. Similar Subset:
AdB < (Vr,s)(ze,A — zeB)}

Theorem A.12. For all A, A T A.

Definition A.48. Fuzzy Subset:
Fsub(A,B) < (Vz,s)(ze,A)— (Ir)(ze B & sCr).

Definition A.49. Fuzzy Element:
Felm(x,s,A) — (Fr)(« e, A & scr).

24

Definition A.50. Scope Expansion
S2(Q) = {1 tw(z) & Gui)wie, Q) & Buy)((1<j<#(:) &
(wy €, (ywi-1) & (j=#0()— Ges)eduw))) |
Definition A.51. Element Expansion
£x(Q) :{yz; tup(z) & (Fwi)(wie, Q) & (Ele)((1<j§#(z)) &
(wy €, yuimt) & (=#06)— Fesaduw) & w=w)))}
Example(s) A.5.
Given Q = {a?, {08, 0P}, {{d? wP}¥} }, then
Sx(Q) = {<A> <(C, B> <C, D> <F,ED>}, and
Sx(Q) — {a<A>’ b<C,B>’ w<C,D>’ d<F,E,D>’ w<IHE,D> }
Definition A.52. Nested Scope Restrict:
NSR(Q,) {y (sef) & (F)(ze,Q) &
(Vw,v)(wd, z — y=2z)or (Juv)(we z — y=NSR(z,08))) }
Definition A.53. Nested Element Restrict:
NER(Q,4) = {zs: (zeSQ) & (Ela,v,i)((anA) & felm(a,v,UZ»(Q))) }
Example(s) A.6.
For Q = {{aAabBacCadD }W {6 afB B hD }W’ {Z a.] ’{kE}F}V }
NER(Q,{k*}) = { {i*J ,{kE}F}V}
NSR(Q{W,B}) U NSR(QA{AF,V.E}Y) = { {67}V, { [P ¢"}7, {4 {KP}7}Y 1

Definition A.54. Named Sets:
Given U where z e U — tup(z) =2 & —-X(p(2)) & (Va,b,0)(< a,b>eU & <a,e>ell — b=¢),

then Ny (A) is defined by:
H@EB)(<A, B> el — Ny(A) =Ny(B)), or
2) (VB)(< A, B> U & -X(A)— Ny(4) =4, or
3) (VB)(< A, B> U & X(A4) — Ny(4)= {zsz (Elx)(rve A & 2 =Ny(x))}

Example(s) A.7.

For A = {a,“B”}, B = {be}, Q = {a{bect}, U={<*“B" B>}
then Ny(A) = Q, Ny (“B”) = B, Ny(B) = B.
A.7. NOTATIONAL EQUIVALENCIES.
Definition A.55. Character String Expression of Membership Expression:

Cseme({2¥ }) = {x[yl}.
Definition A.56. Membership Expression of Character String Expression:

Meese({xly1}) = {a¥ }.

Example(s) A.8.
For Q = {a<tA>, {p<1B> }3<2C> 40 Cseme(Q) = { al<t,81, { vl<1,B>] }i<2,051 }.

25

Appendix B. W3C: XML QUERY REQUIREMENTS

W3C Working Draft 15 August 2000

This version:
http://www.w3.org/TR/2000/WD-xmlquery-req-20000815
Latest version:
http://www.w3.org/TR/xmlquery-req
Previous version:
http://www.w3.org/TR/2000/WD-xmlquery-req-20000131
Editors:
Don Chamberlin (IBM Almaden Research Center) <chamberlin@almaden.ibm.com>
Peter Fankhauser (GMD-IPSI) <fankhaus@darmstadt.gmd.de>
Massimo Marchiori (W3C/MIT/UNIVE) <massimoQu3.org>

Jonathan Robie (Software AG) <jonathan.robie@SoftwareAG-USA.com>

Copyright 2000 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

B Use Cases for XML Queries

The use cases listed below were created by the XML Query Working Group to
illustrate important applications for an XML query language. Each use case
is focused on a specific application area, and contains a Document Type
Definition (DTD) and example input data. Each use case specifies a set of
queries that might be applied to the input data, and the expected results
for each query. Since the English description of each query is concise, the
expected results form an important part of the definition of each query,
specifying the expected output format.

Some of the use cases assume that input is provided in the form of one or
more documents with specific names such as "http://www.bn.com/bib.xml".

Other use cases are based on implicit (unnamed) input documents. The input
environment for each use case is stated in its Document Type Definition (DTD)
section.

These use cases represent a snapshot of an ongoing work. Some important
application areas are not yet adequately covered by a use case. The XML
Query Working Group reserves the right to add, delete, or modify individual
queries or whole use cases as the work progresses. The presence of a query
in this set of use cases does not necessarily indicate that the query will
be expressible in the XML Query Language(s) to be created by the XML Query
Working Group.

B.1 Use Case "XMP": Experiences and Exemplars

This use case contains several example queries that illustrate requirements
gathered from the database and document communities.

B.1.1 Document Type Definitions (DTD)

Most of the example queries in this use case are based on a bibliography
document named "http://www.bn.com/bib.xml" with the following DTD:

<!ELEMENT bib gbook*)>

<1ELEMENT book title, (author+ | editor+), publisher, price)>
<VATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<VELEMENT title (#PCDATA)>

<!ELEMENT last g#PCDATA §>
<VELEMENT first #PCDATA)>
<!ELEMENT price #PCDATA)>
<VELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>

B.1.2 Sample Data

26

WO oo ~1 Oy Ot

<bib>
<book year='"1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>

<price> 65.95</price>
</book>

<book year='"1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year='"2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price> 39.95</price>

</book>

<book year='"1999">

<title>The Ecomomics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>

</bib>

B.1.9 Queries and Results
B.1.9.1 Q1
List books published by Addison Wesley after 1991, with their year and title.
<bib>
<book year='"1994">
<title>TCP/IP Illustrated</title>
</book>
<book year='"1992">
<title>Advanced Programming in the Unix environment</title>
</book>
</bib>

References

. [Ab00] Abiteboul, Serge; Buneman, Peter; Suciu, Dan: Data on the Web, From Relations lo Semistruc-

tured Data and XML, Morgan Kaufmann Publishers, 2000

[Ch68] Childs, D. L.: Feastbility of a Set-Theoretic Dala Structure: A General Structure Based on a
Reconstituted Definition of Relation, Proc. IFIP Congress 1968

[Ch77] Childs, D. L.:Extended Set Theory: A General Model for Very Large, Distribuled, Backend In-
formation Systems, Third International Conference On Very Large Databases, Tokyo, Japan, 1977
[Ch86] Childs, D. L.:A Mathematical Foundation For Systems Development, NATO ASI Series, Vol F24,
Database Machines, Edited by A. K. Sood and A. H. Qureshi, Springer-Verlag, 1986

[Ch00] Childs, D L: Aziomatic Fxtended Set Theory, Unpublished, 1990-2000

[Da95] Date, C, J.: An Introduction to Dalabase Systems, 6th. edition, Addison-Wesley, 1995

[Da00] Date, C, J.: An Introduction to Dalabase Systems, Tth. edition, Addison-Wesley, 2000

[Ma83] Maier, D.,: The Theory of Relational Databases, Computer Science Press, Inc., 1983

[Ma00] Martin, Didier; et al: Professional XML, Wrox Press Ltd., 2000

27

