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Extended Set Theory (XST) was originally developed by D. L. Childs under an ARPA 
contract to address the limitations of Classical Set Theory (CST).  At the root of the 
problem is the set membership definition of CST, which defines sets and the results of 
set operations based on a single membership condition: content. 

CST:  x  A  

Given set A = {x, y, z},  x is a member of set A iff x is contained in set A 

CST does not capture the structure of data (e.g. order or hierarchy), only its contents.  
Since computer based data systems must manage and adhere to a defined physical 
structure of data in order to store, access, and manipulate the data within memory and 
persistent storage, CST is an insufficient basis for implementation of data management 
systems.  For example, CST typically defines the concept of an ordered set, or n-tuple, 
in terms of the Kuratowski definition for ordered sets: 

<a, b> = {{a}, {a, b}} 

This can give unexpected results for set operations such as intersections.  For example, 
using the above definition for an ordered pair in classical set theory: 

<a, b>  <a, c> yields {{a}} = {{a}, {a}} = {{a},{a,a}} = <a, a>, and  

<a, b>  <x, b> yields  (null set) 

Neither of which are particularly useful in developing information processing systems 
where records of elements must be handled consistently and in precise order.  It gets 
worse for larger n-tuples as this CST formulation is recursively nested resulting in very 
large and complex sets to represent the n-tuple elements.  

The Relational Data Model (RDM), which underlies virtually all relational database 
systems in use today, and which is based on classical set theory, limits the 
mathematical foundations for relational database systems.  To compensate for this 
weakness, relational database systems handle the structure of the data 
programmatically and in proprietary ways, which is then abstracted from the application 
level via the SQL interface.  This approach, however, implicitly requires significant 
overhead in terms of indexes and secondary bookkeeping structures, which consume 
storage and processing resources. 

XST resolves the problem in CST by defining set membership in terms of two 
independent conditions: content & scope, and thereby forms the basis for a formal 
capture of both data content and structure. 

XST:  x a A 

Given set A={xa, yb, zc},  x is a member in scope ‘a’ of set A iff it is contained in 
scope ‘a’ of set A. 

(Note: the use of superscripts for element scopes is merely a notational convenience 
typically used in extended set notation and does not imply exponents.  Scopes may also 
be sets as well, supporting very complex structures.) 
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Scope is used to represent both order and hierarchy, or structure, of the content.  XST 
extends the set operations to define both membership conditions of the result set and 
leads naturally to an extended set of axioms for set operations (Blass, 2011).  CST set 
operations are a special case of XST operations when null scopes are used.  So for the 
intersection example posed earlier: 

<a, b> = {a1, b2}, <a, c> = {a1, c2}, and <a, b>  <a, c> yields {a1} 

This is not only more intuitive and better suited to data processing systems, it also 
scales nicely for large n-tuples as well.  

This simple extension to CST provides a solid mathematical basis, leading to several 
benefits for processing and managing large data sets.  Set elements in XST can 
themselves be sets, as in CST.  In addition, scopes can also be sets, supporting 
unlimited complexity in capturing the order and hierarchy of any data model.  In current 
practical implementations, scopes are typically integers to capture order and atomic 
names to capture attribute scopes such as the columns of a table or XML tags. 

In data management systems a key to high performance is minimizing the amount of 
data flowing across the slowest boundary in the system, the storage I/O interface.  By 
modeling the structure and content of data independently and at the same level of 
abstraction, extended set processing can be independently performed on either content 
or structure, or both at the same time.  During the processing of a set operation (e.g. 
executing a query), new intermediate and resultant sets are created with structure and 
content specifically tailored to the requested operation, and with a mathematical identity 
that can be tracked and used in subsequent set operations to improve performance.  
These new sets contain a high density of data relevant to the recent set operations and 
significantly improve performance by excluding irrelevant data from subsequent set 
operations.  Here, relevant is defined as the minimum data needed to respond 
accurately to a specific query operation.  

When executing a requested set operation, the XSP engine first conducts algebraic 
search (i.e., it uses equations) and substitutions to create the lowest cost equivalent set 
operation based on existing sets and subsets.  This is a fast process and requires very 
little I/O.  As a result, the set operations with minimum I/O are selected and executed 
resulting in overall performance improvement and continual optimization. 

In contrast, relational database systems often need to re-transport unused or irrelevant 
portions of RDM table records continually across the slow I/O boundary.  This is a 
significant performance barrier in RDM based systems.  Memory caching schemes are 
a partial solution, but the cached data may still contain significant amounts of irrelevant 
data, it must be carefully managed and prioritized, and it cannot be saved in memory 
indefinitely.  

This reformulation process in XSP is referred to as Automatic Data Restructuring 
(ADR).  The physical data model is built by the system during operation and is 
continually optimized as a byproduct of all extended set operations, resulting in 
minimizing the movement and processing of irrelevant data.  For large databases typical 
of IC data centers, the ratio of relevant data to irrelevant data is typically very, very 
small for any specific query (i.e. most of the data in the database is not required to 
produce the requested result data set).  Elimination of irrelevant data from any data 
movement and processing as early as possible in the set operation results in significant 
speed up of processing performance and is at the heart of XSP’s high performance. 



This concept of the physical data structure being defined and redefined by the set 
operations is called an “operation centric” data model.  In practice, only the desired 
logical data model needs to be defined prior to deploying a XSP based system in order 
to describe how the external applications will view and access the data.  It can be 
modified at any time, even during operation, by redefining scopes and their 
relationships.  A natural consequence is the capability to have multiple data models and 
multiple views of the data.  The physical data model is dynamically built and optimized 
by the system.  

In contrast, RDM based systems can be described as “structure centric” data models in 
that their structure at both the logical and physical levels must be defined in advance 
and strictly adhered to throughout the life of the data system.  This requires extensive 
analysis and data model design effort in an attempt to predict exactly how the system 
will be used and how the data will be ingested, stored, and accessed.  Changes to the 
data model after the relational database system has been built and deployed are very 
expensive, if not impossible in some circumstances.  
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