
Extended Set Theory – A Summary
Tim Ellis (tim.ellis@sri.com)

Extended Set Theory (XST) was originally developed by D. L. Childs under an ARPA
contract to address the limitations of Classical Set Theory (CST). At the root of the
problem is the set membership definition of CST, which defines sets and the results of
set operations based on a single membership condition: content.

CST: x  A

Given set A = {x, y, z}, x is a member of set A iff x is contained in set A

CST does not capture the structure of data (e.g. order or hierarchy), only its contents.
Since computer based data systems must manage and adhere to a defined physical
structure of data in order to store, access, and manipulate the data within memory and
persistent storage, CST is an insufficient basis for implementation of data management
systems. For example, CST typically defines the concept of an ordered set, or n-tuple,
in terms of the Kuratowski definition for ordered sets:

<a, b> = {{a}, {a, b}}

This can give unexpected results for set operations such as intersections. For example,
using the above definition for an ordered pair in classical set theory:

<a, b>  <a, c> yields {{a}} = {{a}, {a}} = {{a},{a,a}} = <a, a>, and

<a, b>  <x, b> yields  (null set)

Neither of which are particularly useful in developing information processing systems
where records of elements must be handled consistently and in precise order. It gets
worse for larger n-tuples as this CST formulation is recursively nested resulting in very
large and complex sets to represent the n-tuple elements.

The Relational Data Model (RDM), which underlies virtually all relational database
systems in use today, and which is based on classical set theory, limits the
mathematical foundations for relational database systems. To compensate for this
weakness, relational database systems handle the structure of the data
programmatically and in proprietary ways, which is then abstracted from the application
level via the SQL interface. This approach, however, implicitly requires significant
overhead in terms of indexes and secondary bookkeeping structures, which consume
storage and processing resources.

XST resolves the problem in CST by defining set membership in terms of two
independent conditions: content & scope, and thereby forms the basis for a formal
capture of both data content and structure.

XST: x a A

Given set A={xa, yb, zc}, x is a member in scope ‘a’ of set A iff it is contained in
scope ‘a’ of set A.

(Note: the use of superscripts for element scopes is merely a notational convenience
typically used in extended set notation and does not imply exponents. Scopes may also
be sets as well, supporting very complex structures.)

mailto:tim.ellis@sri.com

Scope is used to represent both order and hierarchy, or structure, of the content. XST
extends the set operations to define both membership conditions of the result set and
leads naturally to an extended set of axioms for set operations (Blass, 2011). CST set
operations are a special case of XST operations when null scopes are used. So for the
intersection example posed earlier:

<a, b> = {a1, b2}, <a, c> = {a1, c2}, and <a, b>  <a, c> yields {a1}

This is not only more intuitive and better suited to data processing systems, it also
scales nicely for large n-tuples as well.

This simple extension to CST provides a solid mathematical basis, leading to several
benefits for processing and managing large data sets. Set elements in XST can
themselves be sets, as in CST. In addition, scopes can also be sets, supporting
unlimited complexity in capturing the order and hierarchy of any data model. In current
practical implementations, scopes are typically integers to capture order and atomic
names to capture attribute scopes such as the columns of a table or XML tags.

In data management systems a key to high performance is minimizing the amount of
data flowing across the slowest boundary in the system, the storage I/O interface. By
modeling the structure and content of data independently and at the same level of
abstraction, extended set processing can be independently performed on either content
or structure, or both at the same time. During the processing of a set operation (e.g.
executing a query), new intermediate and resultant sets are created with structure and
content specifically tailored to the requested operation, and with a mathematical identity
that can be tracked and used in subsequent set operations to improve performance.
These new sets contain a high density of data relevant to the recent set operations and
significantly improve performance by excluding irrelevant data from subsequent set
operations. Here, relevant is defined as the minimum data needed to respond
accurately to a specific query operation.

When executing a requested set operation, the XSP engine first conducts algebraic
search (i.e., it uses equations) and substitutions to create the lowest cost equivalent set
operation based on existing sets and subsets. This is a fast process and requires very
little I/O. As a result, the set operations with minimum I/O are selected and executed
resulting in overall performance improvement and continual optimization.

In contrast, relational database systems often need to re-transport unused or irrelevant
portions of RDM table records continually across the slow I/O boundary. This is a
significant performance barrier in RDM based systems. Memory caching schemes are
a partial solution, but the cached data may still contain significant amounts of irrelevant
data, it must be carefully managed and prioritized, and it cannot be saved in memory
indefinitely.

This reformulation process in XSP is referred to as Automatic Data Restructuring
(ADR). The physical data model is built by the system during operation and is
continually optimized as a byproduct of all extended set operations, resulting in
minimizing the movement and processing of irrelevant data. For large databases typical
of IC data centers, the ratio of relevant data to irrelevant data is typically very, very
small for any specific query (i.e. most of the data in the database is not required to
produce the requested result data set). Elimination of irrelevant data from any data
movement and processing as early as possible in the set operation results in significant
speed up of processing performance and is at the heart of XSP’s high performance.

This concept of the physical data structure being defined and redefined by the set
operations is called an “operation centric” data model. In practice, only the desired
logical data model needs to be defined prior to deploying a XSP based system in order
to describe how the external applications will view and access the data. It can be
modified at any time, even during operation, by redefining scopes and their
relationships. A natural consequence is the capability to have multiple data models and
multiple views of the data. The physical data model is dynamically built and optimized
by the system.

In contrast, RDM based systems can be described as “structure centric” data models in
that their structure at both the logical and physical levels must be defined in advance
and strictly adhered to throughout the life of the data system. This requires extensive
analysis and data model design effort in an attempt to predict exactly how the system
will be used and how the data will be ingested, stored, and accessed. Changes to the
data model after the relational database system has been built and deployed are very
expensive, if not impossible in some circumstances.

References	
Blass, A. C., Childs D L, (2011). Axioms and Models for an Extended Set Theory. Retrieved from University

of Michigan, Mathematics Dept: http://www.math.lsa.umich.edu/%7Eablass/XST_Axioms.pdf

[First drafted November 2006, revised in collaboration with DL Childs July 2015]

	References

